NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

- DYNAMIC PLATFORM-INDEPENDENT
META-ALGORITHMS FOR GRAPH-PARTITIONING

By
Victor S. Schwartz

September 1998

Thesis Advisor: : Gordon H. Bradley
Second Reader: R. Kevin Wood

Approved for public release; distribution is unlimited.

Reproduced From
Best Available Copy |

| DTIC QUALITY LiIPLUTED &

19981127 073

|
/

\

&
i

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1998 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Dynamic Platform-Independent Meta-Algorithms for Graph-Partitioning

6. AUTHOR(S) , NO0001498WR20001

Schwartz, Victor Scott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) %RZEAF:III:;)SI’Y(?:IGREP oRT

Naval Postgraduate School NUMBER
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
. N . . AGENCY REPORT NUMBER

Air Force Office of Scientific Research, 110 Duncan Avenue, Suite 100, Bolling

AFB, DC-0001

Office of Naval Research, 800 North Quincy Street, Arlington, VA 22217

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

A dynamic platform-independent solver is developed for use with network and graph algorithms of
operations research. This solver allows analysts to solve a large variety of problems without writing code.
Algorithms from a library can be integrated into a meta-algorithm which also provides easy monitoring of solution
progress.

The solver, DORS, is demonstrated by heuristically solving a graph-partitioning problem to minimize the
number of nodes adjacent to other segments of the partition. The model arises from a network-upgrade project ,
faced by the Defense Information Systems Agency (DISA), a problem with over 200 nodes and 1400 arcs.

Solutions are provided on a 266 MHz Pentium II PC using Windows NT 4.0. Eight variants of the problem are
solved involving modification to the objective function, constraints on the size of partition segments, and on the
number of those segments.

DORS (and the meta-algorithm it implements) appears to find a good solution for one of the two problem
formulations for DISA, but has difficulty solving the other. Because the solver allows new algorithms to be easily
added to create more powerful meta-algorithms, DORS should provide a good solution approach for both problem
formulations given a more versatile library of algorithms.

14. SUBJECT TERMS 15. NUMBER OF
Graph Partitioning, Java . . : PAGES 118
16. PRICE CODE

17. SECURITY 1 SECaITY CLASSIFICATION OF | 49, SECURITY CLASSIFI- 20, LIMTATION OF
CLASSIFICATION OF \ CATION OF ABSTRACT
REPORT Unclassified Unclassified UL
Unclassified '

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

DYNAMIC PLATFORM-INDEPENDENT META-ALGORITHMS
FOR GRAPH-PARTITIONING

Victor Scott Schwartz
Lieutenant, United States Navy
B.S., University of Nebraska 1992

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

e WL ALl

Victor Scott Sclw/artz

Approved by:

Gordon H. Bradley, The(isor

Y
R. KGMMGI
ettt

{ \
N chard Rosenthal, Chairman
Department of Operations Research

iii

iv

ABSTRACT

A dynamic platform-independent solver is developed for
use with network and graph algorithms of operations
research. This solver allows analysts to solve a large
variety of problems without writing code. Algorithms from
a library can be integrated into a meta-algorithm which
also provides easy monitoring of solution progress.

The solver, DORS, is demonstrated by heuristically
solving a graph-partitioning problem to minimize the number
of nodes adjacent to other segments of the partition. The
model arises from a network-upgrade project faced by the
Defense Information Systems Agency (DISA), a'problem with
over 200 nodes and 1400 arcs. Solutions are provided on a
266 MHz Pentium II PC using Windows NT 4.0. Eight variants
of the problem are sdlved involving modifiéation to the
_objective function, constraints on the size of partition
segments, and on the number of those segments.

DORS (and the meta-algorithm it implements) appears to
find a good solution for one of the two problem
formulations for DISA, but has difficulty solving the
other. Because the solver allows new algorithms to be
easily added to create more powerful meta—algorithms, DORS
should provide a good solution approach for both problem

formulations given a more versatile library of algorithms.

THESIS DISCLAIMER

The réader isvcautioned that the computer program
developed in this research may not have been exercised for
all cases of interest. While every effort has been made,
within the‘time available, to ensure that the program is
free of computational and logic errors, it cannot be
considered validated. Any application of this program

without additional verification is at the risk of the user.

vii

viii

I.

IT.

IIT.

Iv.

TABLE OF CONTENTS

INTRODUCTION & & v v v et e e e e e e e e e e e e e et et 1

A. BACKGROUND & . . i ittt it e et e s o nnsoosnosoononenns 2
B. META-ALGORITHMS . & i it ittt e eecnnennaeneenanes 5
1. Dynamic Algorithms 10
2. Extensibleottt 11
3. Platform-Independent Algorithms 11
4. External Passive Monitoring
of Algorithmso, 12
5. Java-Based Technologycouevenun.. 14

6. Konig for Graph and Network Algorithmsl5

C. STATEMENT OF THESIS .. . i ittt ittt te e teeenens 15
DISA’'s NETWORK UPGRADE PROBLEM vt e eeeeeeenn 17
KEY CONCEPTS Of DORS & it ittt ettt ettt tintaeeenss 21
A. GRAPH ALGORITHMS .. . it it ittt i ittt e neennnns 21
1. GetInitialSolution e et 23

2. ChangelNode e e e et 26

3. SWaP2NOAEeS & ot vt vttt e it e e e ot 28

4. RandomizeXNodesceoueeueiennnnnn 31

B. OBJECTIVE-FUNCTION EVALUATORS .. ovvvunnnn. 33
1. ObjectiveCountMasterNodes 34

2.. ObjectiveMasterNodesInOrder 37

C. MARELEGAL « « i ittt et ettt e tetieeeaaaeanenn 41
A DEMONSTRATION OF DORS . ..vvveenennnn. [45
A. GRAPHICAL USER INTEFACE . . ¢ ittt ittt ieeaneas 45
1. Graph Control ee s 45

a. Change Node File Button......... 47

b. Change Arc File Button.......... 49

C. Save Node File and Save Arc File 50

2. Load Graph and Save Graph Buttons.... 51

3. Algorithm Selectoroo... 51

4. Reset Button....... ..t iininnnnn 53

5. Optimization Method Selector......... 53

6. Add Algorithm Button............c..... 53

7. Run Buttonc.ii ittt eeennnn. 55

8. Statlus BOX . i ittt it ittt ieiieeaceaneeas 55

9. Meta-Algorithm BoOXcccuieinennnn. 56

10. Graph Panel innnnnn 56

X

B. EXAMPLE OF A META-ALGORITHM RUN WITH DORS . 60

V. ANALYSIS OF RESULTS . . .t ittt it ittt i it iiee e 67

A. FIRST FORMULATIONt ittt ittt enaeannenan 70

B. SECOND FORMULATION . .. ittt ittt ieeeenannn 73
VI. CONCLUSION ...ttt ittt ittt ttieeeaeeenanenas 77
APPENDIX A. SOLUTIONS . ..t ittt ittt it iietnnreoennenns 81
APPENDIX B. META-ALGORITHM RUNS w.. 91
LIST OF REFERENCES ittt ittt . 99
INITIAL DISTRIBUTION LIST ...t ittt ittt iiiiennnnenns 101

Figure
Figure
Figure
Figure
Figure
Figure
Figure

SN O U WN R

LIST OF FIGURES

Initial screen of DORS ... it iiiiiiennnnnn. 46
File Browsing window in DORSttt i iiienenn.. 48
Selecting an algorithm in DORS................. 52
Adding an algorithm to the meta-algorithm...... 54
Sample meta-algorithm box output for DORS...... 58
Graph Panel display provided by Konig.......... 59
Test Graph with 30 nodes and 36 arcs 71

xi

xii

LIST OF TABLES

Table 1. Example of objective function values and

adjusted cumulative time for selected steps of a

meta-algorithm ...ttt it e e e e e 68
Table 2. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem one, m = 40, M =60, K=40.0ccuee... 94
Table 3. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem one, m = 35, M =65, K=40.0ueeeu.. 94
Table 4. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem one, m = 30, M =50, K =5 e e e 95
Table 5. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem one, m = 25, M =55, K=5 95
Table 6. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem two, m = 40, M = 60, K = 4uuuunn... 96
Table 7. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem two, m = 35, M =65, K =40.0.ueeeu.. 96
Table 8. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm using

for Problem two, m = 30, M =50, K=5 97
Table 9. Objective function values and adjusted cumulative

time for selected steps of the meta-algorithm

for Problem two, m = 25, M = 55, K =5 e e e eeeean 97

xiii

xiv

EXECUTIVE SUMMARY

This thesis develops “DORS,” a dynamic platform-
independent solver for use with network and graph
algorithms of operations researqh (OR). DORS will
eventually allow analysts to solve a large variety of
problems without writing code: Simple algorithms from a
library can be combined within DORS into a powerful meta-
algorithm. DORS also provides easy monitoring of solution
progress.

DORS is demonstrated on a graph-partitioning problem
designed to assist the Defense Informétioh Systems Agency
(DISA) in upgrading the Defense Information Infrastructure
(DITI). This problem is heuristically solved by combining a
library of algorithms and a dynamic interface. The
interface is pfovided through proper object management and
a graphical user interface.

Graph partitioning is widely used in OR and computer
science.A It is the problem of partitioning the nodes of an
undirected graph into subsets of a specified size and/or
number so that the sum of the arc weights (or simply the
number of arcs) crossing between segments is minimized.
Other objective functions, like those used here, can be
modeled too, e.g., the total number of nodes adjacent to

‘nodes in other segments.

Xv

DISA wishes to partition a portion of the DII - the
portion is a network with over 200 nodes and 1400 arcs -
into four or five segments and upgrade the hardware in one
segment at a time. DISA’s problem can be viewed as a
variant of graph partitioning.

Many graph-partitioning algorithms have been
developed, but they are usually re-written for each problem
to which they are applied. There is a need for a computer
program and a library of algorithms that can be easily
accessed and applied to a variety of graph-partitioning
problems without modifying code. DORS fills this need.

DORS (and the meta-algorithm it implements) appears to '
find a good solution for one of the two problem
formulations for DISA, but has difficulty solving the
other. Because the solver allows new algorithms to be
easily added to create more powerful'meta—algorithms, DORS
should provide a good solution approach for both problem
formulations given a more versatile library of algorithms.
(Computation is performed on a 266 MHz Pentium II PC
operating under Windows NT 4.0.)

As new algorithms are added to DORS and monitoring
methods developed for it, DORS will become a powerful,

standard tool for solving OR problems.

Xvi

I. INTRODUCTION

The Defense Information Infrastructure (DII), which is
the network of data-transmission facilities maintained by
the Defense Information Systems Agency (DISA), is outdated
and must be upgraded to newer and faster technologies. The
proposed upgrade will not only increase system speed but
will also allow for easy modifications in reaction to
future increases in user demand.

For the portion of this system in the continental
United States, DISA intends tovupgrade the system by
partitioning the system into four or five approximately
equal-sized pieces, and then upgrade the hardware in one
segment of the partition at a time. One key contribution
of this thesis is the modeling of the problem in terms of
graph partitioning. We refer to the proposed graph-
partitioning models or “problems” as the DISA Transmission
.Facilities Improvement Pfoject (DTFIP) . (See references
[14] and [17] for basic background in graph partitioning.)
DISA’s goal is to maintain connectivity of the DII
throughout the project in order to minimize the impact on
their customers. An important secondary concern is to

minimize the costs of the upgrade.

Two distinct graph-partitioning problems arise oﬁt of
DTFIP and its cost and connecting concerns. The second key
contribution of this thesis is the development of a solver
for these problems, a solver that allows an analyst to
construct dynamic platform-independent meta-algorithms for
the problems.

A. BACKGROUND

DISA maintains worldwide transmissions facilities in
support of the Department of Defense (DoD). However, the
first stage of DTFIP, and the scope of this thesis, is
limited to the continental United States. The section of
the DII facilities discussed in this thesis is a network
consisting of roughly 200 switching stations (nodes in the
transmission network) and roughly 1400 connecting
communications lines (arcs in the network).

DISA’'s primary mission is “to plan, engineer, develop,
test, managé programs, acquire, implement, operate, and
maintain information systems for Command, Control,
Computers, Communications, and Information (C4I) and
mission support under all conditions of peace and war” [4].

DII is the backbone of the DoD’s C4I network. It provides

the connections and interfaces that makes DISA-managed
programs a system capable Qf sharing data and resources.

A degradation of the DII would adversely affect DISA’s
four primary mission areas, namely, the Global Command and
Control System (GCCS), Defense Messaging System (DMS),
Defense Information System Network (DISN), and Global
Combat Support System kGCSS). These branches of DII
provide the foundétion for national defense assets by
integrating All military command, control, and information
through dispersed UNIX and personal computers tied together
through the Secret Internet Protocol Router Network
‘(SIPRNET) [4]. SIPRNET is an encrypted extension of the
DII. |

GCCS is a system of databases and applications that
provides support to the nation’'s war-fighters. The primary
use of GCCS is C4I: GCSS provides the tie between the —
"intelligence-collection agencies, command staffs, and unit
commanders in the field. These customers rely on the
information passing through DISA’s network in support of
GCCS to keep them apprised of all aspects of warfare. GCCS
provides real-time data critical in countering enemy

actions and protecting US assets and personnel. An

interruption to this system would almost bring the DoD to a
halt until alternate systems were brought on line.

The DII currently operates using Statistical
Multiplexing. This technology allows a data transfer speed
of 19.2 kilobits per second (kBps) per channel and
aggregate transfer speeds of up to 76.8 kBps when
multiplexing eight channels [7]. These speeds were the
best available when the network was built, but.are becoming
more and more inadequate as the databases being accessed
through the DII become larger and DoD intelligence traffic
increases. In order to keep up with technology and improve
customer service, DISA plans to upgrade their switches to
Asynchronous Transmission Mode (ATM).

ATM switqhes allow for basic data transmission rates
in excess of 155 Megabits per second (MBps) with the
ability to easily increase the rates throﬁgh improved
’multiplexingland the use of multiple transmission lines
[6]. In addition to the orders-of-magnitude increase in
transfer rates, ATM switches allow improvement in
transmission speeds as technology advances through better
multiplexing and compression routines. The traditional

limit of eight lines for multi-channel transmissions is

also broken.

Because the DII is so vital, its functionality must
not be significantly degraded during the upgrade; the
system mu;t maintain connectivity throughout this process.
In order to keep service interruptions to an absolute
minimum, any switch that communicates with both old and new
switches must maintain the older Statistical Multiplexing
and the new ATM switching circuitry. When all connected
facilities have been upgraded and the Statistical
Multiplexing switches are no longer needed, they may be

removed.

B. META-ALGORITHMS

DTFIP, the DISA upgrade problem, may be modeled using
variants of the classic graph-partitioning problem (e.g.,
[31, [14], and [15]). The basic problem of DTFIP is to
minimize the number of “interface nodes” that are connected
to nodes in other segments of the partition and thus
'réquire interface hardware. But, different upgrade models
lead to two objective functions: The first objective
minimizes the total number of interface nodes, and the
second minimizes the number of interface nodes needed at
any one time. These objectives are explained in further

detail in Chapter III.

Graph-partitioning problems are usually solved using
heuristics. A heuristic algorithm is a method of searching
for an optimal solution to a problem; usually it will
construct a good solution but cannot guarantee that an
optimal solution will be found.

Graph-partitioning problems may also be solved using
integer-programming techniques (e.g.,[17]). Solution times
for integer programs tend to grow exponentially in problem
size, and therefore a solution may not be produced in a
timely manner. A literature review indicates that
heuristic algorithms are generally accepted as a better
approach for handling large graph-partitioning problems.

There are a variety of heuristic algorithms that may
be applied to graph partitioning; each has its advantages.
The quickést heuristic is a greedy algorithm that operates
on each node only once. The algorithm assigns each node to
the best available partigion segment; this choice is based
on the current solution characteristics of the node being
assigned, the change in a partial or complete objective
function, etc. Although a feasible solution is found very
quickly, the algorithm is myopic and the solution may be

far from optimal [14].

Commonly, an.initial solution is obtained with a.
greedy algorithm and this solution is then refined with a
local search [9] which finds a local optimum "near" the
initial solution. Once a local optimum is found, a more
complicated search technique may be used to construct an
improved solution that is locally optimal with respect to
the more complicated search.

One local search technique simply enumerates every
possible solution in the vicinity of the current solution.
This method may be used to find a local optimum using an
initial solution and is guaranteed to find a better
solution if one exists in its search area. This method can
be focused on a very narrow section of the problem space or
it may be carried to the extreme of enumerating every
possible solution. The key to such an algorithm is
.determining the right tradeoff between increased
enumeration and impro&ed solutions [15]L

An alternative to exhaustive searches over a subset of
the problem space is to “shock” the solution through
drastic changes in order to force the algorithm out of a
local optimum. Such a shock moves some subset of the nodes
into different partition segments. After the shock, the

solver can switch back to a local search that will find a

Since the changes produced by the shock are

local optimum.
random, fhey are not guaranteed to find a better solution,
even 1f one exists, unless they are run indefinitely.

Since we are time-constrained, this means that we may not
find the optimal solution.

Shocks change part of the soiution while leaving part
of it intact. The idea is to escape a local optimum
through a random move while retaining part of the best
solution found so far. Once a new solution is found, a
deterministic- technique may be used to find a local optimum
in the vicinity of the shocked golution. It is hoped that
the new 1dcal optimum will be an improvement over the
previoué best solution. It is difficultvto determine the
size and frequency with which the shocks should be used,
but commonly, such an algorithm starts witﬁ large shocks
that are slowly decreaséd in magnitude [15].

' There are many algorithms.for graph-partitioning not
discussed in this thesis. For example, Recursive
Orthogonal Bisection [8], Spectral Multi-section [2],
Neural Networks [10], Genetic Algorithms [11], Mean Field
Annealing [12], and Simulated Annealing [12] have all been
used effectively. The variety of heuristic algorithms

available for graph partitioning and the large number of

factors that may be fine-tuned leads to the concept of a
meta-algorithm.

It is}difficult to construct good solutions to graph-
partitioning problems. Algorithms for this problem often
quickly determine a reasonably good solution but then
consume significant computer time to produce little or no
improvement. Often, a sequence of algorithms, each
executed for a short time, finds a better solution than
running one algorithm for a long time.

A seqﬁence of algorithms is called a “meta-algorithm.”
Specifying;an appropriate sequence of algorithms is a
difficult task because a meta-algorithm that works well on
one class of problems may not work well on another class.
Thus, an analyst faced with solving a specific problem,
such as the DTFIP, may want to try several meta-algorithms
to determine which is best er the problem at hand.

This thesis develops a solver that allows an analyét
to easily construct meta-algorithms that can then be used
to solve the DTFIP graph-partitioning problems as well as
other graph-partitioning problems. A solver to construct
meta-algorithms should be dynamic, extensible, platform-

independent, and capable of passive external monitoring.

These concepts will be explained in the following few
pages.

1. Dynamic Algorithms

The solver used to form a meta-algorithm to solve
DISA’'s problem, and other graph-partitioning problems,
should be dynamic. A dynamic solver is one that allows an
analyst to choose among a variety of model formulations and
combination of algorithms to solve those formulations. The
analyst is able to quickly change algorithms and compare
results, and can exploit algorithms that he or she may be
unable to code personally. This versatility should reduce
.the analyst’s workload.

Often, the objective function of a problem is not well
defined. The analyst must determine the customer’s needs
based on imperfect inputs. This uncertainty is further
increased when a customer receives an initial solution to
.the pfoblem at'hand; 'The‘custbmer ﬁay see flaws in ﬁhis
solution and may then modify reguirements. A;dynamic
solver will allow the analyst to compose a new meta-
algorithm and change the objective-function evaluator

qﬁickly in response to these developments.

10

2. Extensible

The solver must be extensible. It should allow for
the addition of new algorithms to its library and allow
modification of existing algorithms without changing or
recompiling the solver program. When the library is
modified, the code for algorithms other than the one being
added or modified is unaffected. Similarly, the solver
should allow additional objective-function evaluators to be
added or modified.

3. Platform-Independent Algorithms

Most computer programs can be executed in only one
hardware/software environment. The term “platform-
independent” refers to a program that can be executed
without modification on a variety of hardware and software
environments. For the sake of versatility, the solver
program used in DTFIP should be platform-independent.

Analysts throughout the world work on a variety of
computers. In order to facilitate analysts’ use and to
allow the analysts to access algorithms developed by
others, contemporary sdlvers should be platform-

independent. If platform-independent design isn’t used,

11

isolation of algorithms to specific systems will continue
unnecessary duplication of efforts.

4. External Passive Monitoring of Algorithms

The solver should allow monitoring of the progress of
algorithms and monitoring of changes to the status of any
property of the problem being analyzed. This monitoring
should be controllable by the analyst, allowing a variety

of monitoring methods and methods to display solver

progress.
1

If monitoring is built into an algorithm, information
that will b; available to the analyst is predetermined.
This thesis focuses on reusable code and methods to solve
DTFIP. Since the needs of future analysts are not known,
monitoring is best done by a method external to the
algorithm to allow maximum versatility.

With passive external monitoring, there is only a
small decrease in algorithmic perférmance to establish an
interface that allows communication with “listener
methods” [13]. Listener methods monitor algorithmic
performance externally. They keep track of key changes to

the solution as the algorithm runs and make this

information available to other algorithms and programs.

12

Since changes to the solution are monitored throﬁgh
listener methods, the data extracted may be quickly
modified to conform to the analyst’s needs. For example,
in the early stages of a meta-algorithm solution run, every
change to the solution could be monitored and displayed.
For our problem, this display could include a graph of the
optimal solution and a color display of the network showing
the best partition found. As the algorithm progresses and
solution improvements are found less frequently, the
analyst may decide to change the displays in use. For
example, a graphical display of the solution could be
displayed in the beginning while changes are rapid; and the
analyst could switch to an algorithm status display when
changes to the solution become infrequent.

Passive external monitoring also allows improved
.parallel processing. A listener module gathers data
including solution improvements from thé algorithm as it
progresses, without interrupting the algorithm. This data
is readily available to any method that wishes to monitor
progress. If several computers run separate algorithms
simultaneously, they can share the improvements, thus

forming an interactive unit acting as a single processor.

13

The solver developed in this thesis is capable of -
passive external monitoring through the use of Konig[l6].

However, the thesis does not demonstrate this capability.
5. Java-Based Technology

The requirements for a dynamic, extensible, platform-
independent system with passive externél monitoring can be
satisfied if the system is written in the Java programming
language [13]. Platform independence is fundamental to
Java: The language is designed to run on any computer
regardless of manufacturer and operating system. Java
accomplishes this by generating architecture-neutral
bytecode, i.e., low-level computer instructions that have
nothing to do with a particular computer’s architecture.
The instructions are designed to be easy to interpret and
translate into native maohine code on the fly [13].

Java supports loading of classes at run-time and
'loading of clasées while a prograﬁ ié éxecnting; The
solver is extensible in that algorithms can be added
without modifying or recompiling the solver or the other
algorithms. Algorithms are added to the solver dynamically

after the solver has begun execution.

14

6. Konig for Graphs and Network Algorithms

Konig [16] is a software system for writing algorithms
for graphs and networks. It can read and write graphs and
networks and display their node and arc properties.
Algorithms written in Konig can be passively monitored; the
analyst can have access to activity on all nodes and arcs
while the algorithm ig‘executing. Konig is used to

implement the algorithms in the solver.
C. STATEMENT OF THESIS

This thesis develops and demonstrates the Dynamic
Operations Research Solver (DORS). It is a solver for
‘dynamically constructing meta-algorithms for solving graph-
‘optimization and network-optimization problems. In this
thesis, DORS is limited to constructing meta-algorithms to
solve graph-partitioning problems. However, its design is
applicable to other operations research problems whe;e
d?namic, exteﬁsible méta-élgofithmé are likely to be
beneficial. The DORS design provides a tool to solve
Opefations research problems using a variety of algorithms
and objective functions. Little programming is needed with
DORS and sets of algorithms and objective-function

evaluators may be changed easily. DORS allows the user to

15

spend time analyzing problems and possible solutions,
rather than programming and debugging.

This thesis demonstrates the use of DORS to solve
DTFIP. A meta-algorithm is composed using DORS for this
purpose, a meta-algorithm that incorporates a variety of
simple algorithms such as greedy and shocking heuristics.

This thesis consists of six chapters. Chapter II
defines the DISA problem in detail and discussés
assumptions. Chapter III defines key concepts used in the
development of the solver and algorithms used to solve the
problem. Chapter IV explains and demonstrates the use of
DORS on the DISA problem. Chapter V summarizes the results
and makes recommendations for upgrading DiSA’s transmission

facilities. Finally, Chapter VI concludes the thesis.

16

II. DISA’S NETWORK-UPGRADE PROBLEM

This thesis investigates two possible solutions to
DTFIP. DISA’'s objective with DTFIP is to minimize the cost
of upgrading a portion of the DII while maintaining
connectivity.

The portion of DII under study can be represented by a
network G=(N,A) where N is a set of nodes and A is a set of
undirected arcs (i,j) which are distinct, unordered pairs
from N. The network nodes will be partitioned into K
segments, Ni, Nj,.., Nx. DISA expects K to be four or five.
The nodes should be partitioned such that |N¢| = |N|/K, k =
1,.., K. fhis thesis implements this requiremént using
constraints m £ |Nx| £ M where m = |[N|/K - §, M = |[N|/K + 3,
6 > 0. DISA wouid like 8 = 10 when |N| = 200. The values of

K, m, M, and 8.are specified by DISA and are subject to
.change at a future date. 1In the computational runs the
values furnished by DISA are used.

In-the first formulation, Problem 1, we wish to
minimize the number of interface nodes N’, i.e., nodes that
are directly connected to one or more nodes in different
partition segments so that interface hardware must be

installed. The problem may be summarized as:

17

ObjectiveCountlnterfaceNodes, Problem 1 Definition :

Given an undirected graph G = (N, A) with node set N and K segments,
Find a K - partition of N, {N,,N,,...,N}

Such that m<|N,|<M fork=1toK,and

So that |N ’| is minimized, where

N'=J{ieN,|3G, j)e Awith jeN,}
k

In a second formulation of the DTFIP, Problem 2, we
will allow the interface hardware of the interface nodes to
be used multiple times. In this formulation, the partition
segments are ordered from 1 to K, with the segments being
upgraded in that order. The key issue is to reduce the
maximum number of nodes required at any step of the
upgrade. This second objective may be summarized as
follows:

ObjectivelnterfaceNodesInOrder Problem2 Definition

Given an undirected graph G = (N, A) with node set N and K segments,
Find an ordered K - partition of N, {N,,N,,...,N;}

Such thathlN,JSM fork=1to K and

So that IN ”| is minimized where

K
3(i, j)e Awith je UNk,}

k'=k+1

k
N"=Max{i € UNk,
k'=1

k<K

The first formulation minimizes the costs associated
with installing and maintaining interface hardware by
minimizing the number of interface nodes. The second

formulation is likely to increase the number of interface

18

nodes and increase labor costs. As an offset, it reduces
hardware costs associated with the upgrade. It is not
clear which of’the formulations will be more useful to
DISA. Given both solutions, DISA should be able to compare
potential labor costs from the first formulation with
potential savings in hardware from‘the second and select

the better solution.

19

III. DORS’ KEY CONCEPTS

This chapter develops the key concepts associated with
DORS and explains the major functions associated with the
solver. It also provides detail on the operations of the
specific functions used in the DTFIP. Chapter IV
demonstrates these capabilities.

“A. GRAPH ALGORITHMS

A generic graph algorithm to solve a generic problem
takes a graph and possibly a candidate solution to the
problem as input and performs its operations in order to
obtain or improve a solution. This thesis demonstrates
-four algorithms to be used for graph partitioning namely,
GetInitialSolution, ChangelNode, Swap2Nodes, and
RandomizeXNodes. GetInitialSolution creates a random
starting solution; the other three algorithms operate on an
input solution to improve it.

Algorithﬁs in DOﬁS a?e nét tiéd to any specific
objective function and do not know which objective function
is ﬁsed. Instead they access Evaluate_Objective which in
turn forwards necessary information to the proper

objective—function evaluator.

21

Before the meta-algorithm is executed, the analyst .
selects a particular objective function.

Evaluate_Objective accesses this selection and ensures that
the algorithm communicates with the set of objective-
function evaluators associated with the objective function.
The objective-furiction evaluator is responsible for the
actual calculations; it is explained later in this chapter.

An algorithm in DORS maintains one local éolution‘and
its associated objective value. Algorithms, except for
GetInitialSolution, have access to the best known solution
and associated objective value found by previous algorithm
calls. The solution maintained by the algorithm, the local
solution, is “active.” The active solution is being
modified for potential improvements. The best solution is
compared to the local solution and is updated if the local
solution is an improvement.

Any algérithm may be assigned to perform its
operations on a local solution from a previous algorithm
call or on a cépy of the best solution. In the latter
case, a copy of the best solution becomes the local
solution.

Algorithms in DORS access and store solutions related

to the input graph using Konig [16], a Java-based language

22

that enables creation and control of graphs. ZKonig is also
the mechanism through which graph-based information is
stored and passive external monitoring is provided should

an analyst develop code to monitor DORS’ meta-algorithms.

1. GetInitialSolution

This algorithm provides an initial solution to the
graph-partitioning problem by randomly aésigning each node
to a partition. ,Itvdoes not initially guarantee that this
solution is feasible with respect to the cardinality
constraints, m £ |Nx|] £ M for k = 1,.., K. So after
constructing a random solution, this algorithm calls
MakeLegal, a segment of code that checks feasibility and,
if necessary, modifies the solution to produce feasibility.
MakeLegalvis explained later in the chapter. After the
solution is guaranteed to be feasible, the solution is sent
to an objective-function evaluator to calculate the
objective value.

A random solution is not the only way to obtain a
starting solution. Simon [8] demonstrates that, in a
planar graph, recursive coordinate bisection gives quick'
initial partitiohs while providihg relatively good

solutions. This algorithm is based on the fact that, in

23

planar graphs, nodes tend to be directly connected to nodes
in close proximity. Therefore, proximate nodes will tend
to be in the same partition.

It seems that the proximity argument might also apply
to some non-planar graphs like the DTFIP graph.
Intuitively, nodes in close geographic proximity should
tend to be in the same segment of the partition. However,
when the DTFIP graph was tested using partitioning
algorithms based on geographic proximity of nodes (using
“coordinatévmulti—section” [17]), the solutions were not
much bette; than random solutions. An explanation for this
deviation from Simon’s findings is that the DTFIP graph
contains arcs connecting many nodes that are a great
distance apart while several nodes that are close
geographically are not connected by arcs. Since
coordinate-based initial solutions seem to be no better
than randomly produced solutions, a random initial
assignment is used in the meta-algorithm designed to solve
the DTFIP.

The random assignment procedure scans every node in
the graph and'assigns it to a partition segment randomly.
The resulting partition is then sent to MakeLegal to

guarantee that the cardinality constraints are satisfied

24

and then to Evaluate_Objective which forwards the solution
to a specific objective-function evaluator to calculate the
objective value of the solution.

The objective-function evaluator is not specifically
called by GetInitialSolution or any other algorithm. The
algorithm makes a generic call to Evaluate_Objective which
in turn forwards the call to a specific objective-function
evaluator determined dynamically by the analyst. There are
three variants of calls to Evaluate_Objective: The type A
variant evaluates the objective value from scratch, while
type B and C compute the full objective value efficiently
by evaluating the change in the objective value given small‘
changes in the solution. Type B computations are based on
changing a single node, and type C computations are based
on changing multiple nodes. If Evaluate_Objective is of
type B or C and the proposed change is beneficial, the
objective-function evaluator makes the'change and returns
the improved solution and its value. Otherwise the
original solution and its value are returned.

In GetInitialSolution and all of the other algorithms,
a partition is defined on the nodes as a function v; where

vy = k if the node i is in the partition k. (In the code, v;

25

is represented by an array element v[i].) The pseudo-code

for GetInitialSolution is:

Procedure: GetInitialSolution (G,M,m,K)

Global wvariables: V[], best known solution
O, best objective value
Input: G=(N,A), an undirected network in

adjacency-list form

m, minimum partition segment size
M, maximum partition segment size
K, number of segments

Output: v[], a random solution
o, objective value of the random
solution
VI[], best known solution

O, best objective value

For i = 1 to |N| {
V{i] « randomInteger(l,XK)
! randomInteger(a,b) returns a uniformly
! distributed random integer from [a,b]
} _ .
Call MakeLegal (G,M,m,K,v[])
o <« Evaluate_ObjectiveA (G,vI[])

If o < O { .
O «< o
V[] « vI[]

}

Return (o, vI[])

Note that Evaluate_ObjectiveA (G,v[]) is a generic
function that computes the objective from scratch.

2. ChangelNode

This algorithm searches the vicinity of the current
solution by sweeping through each node in the graph and

moving each node from its current partition segment to each

26

other segment, in succession. If the solution is feasible,
the new partition assignment is sent to an objective-
function evaluator for evaluation. The objective-function
evaluator makes the proposed change if the solution is
improved and returns the modified solution and objective
value. If the proposed change does not improve the
solution the evaluator returns the original solution and
objective wvalue.

The algorithm sweeps through all nodes repeatedly
until no better solution is found through an entire sweep

of the nodes. The pseudo-code for this procedure is:

Procedure: ChangelNode (G,m,M,K,0,v[])

Global variables: V[], best known solution
, O, the best known objective value
Input: G=(N,A), an undirected network in

adjacency-1list form

m, minimum partition segment size
M, maximum partition segment size
K, number of segments

v[], starting solution

o, starting objective value

Output: v[]l, solution at algorithm completion
o, objective value at algorithm
completion
{
For k =1 to K { ! k is the segment of the partition
clk] « 0 I c[k] will be |Ny]
}

7 ¢« positive infinity
For i = 1 to |N| {
k « v[i]

27

clk]++

}
While 2 > o {
Z <« o
For i = 1 to |N| {
k' « vii]
If c[k’] > m {
For Xk =1 to K {
If k # k' and c[k] < M {
{o, v[]} « Evaluate_ObjectiveB (G,o,vI[],k,1)
} .
}
}
}
}
If o < 0 { ! If after algorithm is finished the
! local objective value is better than
! the best objective wvalue, update
! the best solution and objective value
0 « o '
VI] « v[]
}
Return(o, vI[1)

Evaluate_ObjéctiveB (G,o,vI[],k,i) is a generic
function that evaluates the objective of the partition that
results from the change in node i’s segment from v[i] to k.
3. Swap2Nodes
This algorithm broadens ﬁhe search from ChangelNode,
by interchanging two nodes' partition segments
simultaneously. The algorithm sweeps through every
possible combination of two nodes i # j with v[i] # v[j] and

proposes a swap of the partition segments to which they are

28

assigned. An objective-function evaluator of type C
implements the proposéd swap and returns the new solution
along with the new objective value if it is improved. If
no improvement is found, the original solution and
objective value are returned to the algorithm. The
algorithm keeps proposing node swaps in this fashion until
it has looked at every combination without an improvement
'in the solution.

The concept used by ChangelNode and Swap2Nodes may be
continued to three or more nodes. These extended
algorithms iterate through all possible combinations in the
vicinity of the current solution. As the number of nodes
interchanged increases, computation time increases
exponentially. DTFIP was tested using three-way
interchaﬁges through all nodes, but there was little gain
in the quality of the solution so it was not used in this
thesis. (However, such aigorithms will need to be
implemented for use with different problems.) The pseﬁdo—

code for the two-way interchange procedure is:

Procedure: Swap2Nodes (G,o,v[])

Global variables: V[], best known solution
O, the best known objective value
Input: G=(N,A), an undirected network in

adjacency-list form

29

v[], starting solution
o, starting objective value

Output: . v[], solution at algorithm completion
‘ o, objective value at algorithm
completion

V[], best known solution
O, the best known objective value

{
Z ¢ o .
While Z > o {
Z ¢ O
For i = 1 to |N|
For j = i to |N| {
If v[i] # v[j] {
{o, v[]} « Evaluate_ObjectiveC
(G,o,vI[l,{i,3},{vI3], V[ll})
}
} .
}
-}
If o < O { ! If after algorithm is finished the
! local objective value is better than
! the best objective value update
! the best solution and objective value
O ¢« o
VI] « vI[]
}
Return (o, vI[])
}

Evaluate_ObjectiveC (G,o,v[],{i,j}, {v[jl,vI[il}) is a
generic function that evaluates thé objective of the
partition that results from changing the partition segment
of a set of nodes. In this case nodes i and j are moved

into segments v[j] and v[i], respectively.

30

4. RandomizeXNodes

ChangelNode and Swap2Nodes search a limited portion of
the solution space and quickly find a local optimum. We
could use GetInitialSolution to find many different
starting locations. ChangelNode and Swap2Nodes could then
improve on these random solutions until an acceptable
solution is found. Although this would work theoretically,
it could take a long time. 2An alternative to getting a new
initial solution is to "shock" the best solution.

RandomizeXNodes shocks the.solution by randomly
changing the partition segment of a pre-specified number of
nodes. Oﬁce this shock has . been performed, there is the
possibility that the solution is no longer feasible. To
correct this, RandomizeXNodes sends the solution to
MakeLegal to check the ﬁeasibility of the solution with
respect to the cardinality constraints. If the solution is
'not'feasible with respect to tﬁe éardihality constraints,
MakeLegal makes it so. After feasibility is guaranteed,
the solution is sent to an objective-function evaluator of
type A. The evaluator determines the new objective value

and returns 1it.

31

After shocking the system with RandomizeXNodes,
ChangelNode and Swap2Nodes may be used to improve the
solution again.

It is difficult to determine the size and frequency
with which these shocks should administered. As was
pointed out in Chapter I, the normal procedure is to start
with large shocks and reduce the size of the shock slowly.
In theory, if the number of nodes changed by these shocks
is large enough and that number is reduced slowly enough,
the solution will converge [12]. ("Slowly enough" typically
implies an exponentially long run time, however.) 1In the
DTFIP meta-algorithms, the initial number of nodes changed
by the shocks will be large, say half of the nodes, and
will be reduced fairly quickly, say one node per iteration.
It is hoped that ﬁhe solution obtained in this manner will
be good, although the optimal solution cannot be
guaranteed.

The pseudo-code for this procedure is:

Procedure: RandomizeXNodes (G,m,M,K,o,v[],C)

Global variables: V[], best known solution
O, the best known objective value
Input: G=(N,A7A), an undirected network in

* adjacency-list form
m, minimum partition segment size
M, maximum partition segment size
K, number of segments

32

v[], a starting solution
o, starting objective value
C, number of nodes to change

Output: v[], a solution with C nodes moved
o, objective value after nodes moved
V[], best known solution

O, the best known objective value

For j = 1 to C {
1 ¢« randomInteger (1,N)
v[i] ¢« randomInteger (1,K)
! randomInteger(a,b) returns a uniformly
! distributed random integer from [a,b]

}
Call MakeLegal (G,m,M,K,v[])

0 ¢« Evaluate_ObjectiveA (G, vI[])

If o < O { I If after algorithm is finished the
! local objective value is better than
! the best objective value update
! the best solution and objective value
O ¢« o '
V[] « vI[]
}
Return (o, v[])
}
(Note: Evaluate_ObjectiveA (G,vI[]) is described after

thé pseudo-code for ChangelNode.)

B. VOBJECTIVE—FUNCTIQN EVALUATORS
Objective-function evaluators receive a proposed

solution from an algorithm via Evaluate_Objective and

compute the solution’s objective value. If the objective

v;lue is improved, the current solution is updated.

OBjectiVe~function evaluators must be able to work with a

variety of solution changes. If they always recalculate

33

the objective value from scratch, much computational effort
will be wasted. To keep the solver running as fast as
possible, three versions of each objective-function
evaluator are used: Type A objective-function evaluators
evaluate the objective value from scratch, while type B and
C compute the full objective value efficiently by
evaluating the change in the objective value given small
changes in the solution. Type B computations ére baseé on
changing a single node, and type C computations are based
on changing multiple nodes.

1. ObjectiveCountInterfaceNodes

The objective-function evaluator
ObjectiveCountInterfaceNodes evaluates the function for
Problem 1. It counts the total number of interface nodes
that will be needed in the graph. As is required by all
objective-function evaluators, it will evaluate changes to
'just one node, a set of hodes, or re—evaiuate the entire

solution. The objective-computing procedures are:

Procedure: ObjectiveCountInterfaceNodesA (G,vI[])

Scans every node i in G. If i is adjacent to one or
more nodes not in the same segment as i, then i1 is an
interface node. '
Input: G=(N,Aa), an undirected network in

adjacency-list form
v[], solution to be evaluated

Output: o, current objective value which is the
number of interface nodes in the
solution defined by v[]

o« 0
For i = 1 to |N| {
found ¢« false
For each node j adjacent to i {
If vi{i] # v[3] {
If found = false {
o++
}

found ¢« true

}

Return o
1

Procedure: ObjectiveCountInterfaceNodesB (G,o,v[],p,1)
Checks if input node i is an interface node in its
current partition segment and the proposed segment N,. If
it is an interface node in its current segment but is not
if moved to segment p, the node is moved and the current
objective value is reduced by one; otherwise the original
partition and its objective value are returned.
Input: G=(N,3A), an undirected network in
adjacency-list form
v[], current solution
o, current solution value which is the
number of.interface nodes in the
partition defined by v[]
i, a node proposed to be moved to N
p, a proposed partition segment index
for i
Output: v[], the input solution if the proposed
' move does not improve the
objective value; otherwise the
input solution with node i moved
to segment p
o, objective value of returned solution

35

found « false
better « true
For each node j adjacent to i ({
If v[i] # vI[j]{
found <« true
}
If p# v[jl{
Better « false

}

If found and better { ! if the objective value is
! improved by the move

O__
vin] « p
}

Return (o,v{])

Procedure: ObjectiveCountInterfaceNodesC
(G,0,v[],set S,mapping pll1)

Counts the number of interface nodes, if any, that. .
would be reduced by moving each node i € S from its current
partition segment to a new partition segment Ny;i;. If the
number of interface nodes is reduced by the proposed moves,
the solution is modified by making these moves and the
objective value is updated; otherwise the original’
partition and its objective value are returned.

Input: G=(N,A), an undirected network in
adjacency-list form
v[], current solution

o, current solution value which is the
number of interface nodes in the
partition defined by vI[]
S, a set of nodes
pll, a mapping of nodes to partition
segments
Output: v([], the input solution if the proposed
: moves do not improve the objective
value; otherwise, the input

solution with each node s € S
moved to pls].

36

o, objective value of returned solution

count <« 0
found « false
better « true
for each i € S {
found « false
For each node j adjacent to i {
If v[i] # vI[j] {
found « true
}
If pli]l # vIjl{
better « false

}
}
If found and better {
Count++
} .
If not found and not better {
Count--
» ‘
}

If count > 0 { ! count is the amount by which the
! proposed change will improve the
! objective value

For each s in S {vis] « pls]}
0 « o - count

}

Return (o,vI[])

2. ObjectiveInterfaceNodesInOrder

The objective-function evaluator

ObjectiveInterfaceNodesInOrder evaluates the objective

function for Problem 2: That problem is to minimize the

peak number of interface hardware sets that will be needed

over all steps of DISA’s upgrade. This objective-function

37

evaluator has three subroutines analogous to those for
ObjectiveCountInterfaceNodes: It will evaluate changes to

just one node, a set of nodes, or re-evaluate the entire

solution.

For Problem 2, even a change in a single node can
affect the status of several nodes. Because the potential
number of nodes affected by the change is large, an
efficient means of reducing the computational effort has-
not been determined. Thus, all objective function
evaluations are essentially made from scratch for Problem
2. If a more efficient means is determined, it can be
implemented by modifying the type B and C variants of

ObjectiveCountInterfaceNodes. The pseudo-code for these

procedures are:

Procedure: ObjectiveInterfaceNodesInOrderA (G vI[])

For each partition segment k < K (for each step of the
upgrade process), every node i in G is scanned. If node i
is adjacent to one or more nodes j such that v[j] > k, and
v[i] £k, i is an interface node for that step of the
upgrade. . The objective value is the largest number of

interface nodes found at any step.

Input: G=(N,A), an undirected network in
adjacency-list form
v[], solution to be evaluated

Output: o, objective value of returned solution

{
o « 0

current <« 0
worst « O

38

K ¢ maxi-1,., |y VI[il]
For k = 1 to K-1 {
current « 0
For i = 1 to |N| {
If v[i] £ k {
found « false
For each node j adjacent to i {
- If v[j] > k {
found ¢« true
} .
If found {current++}

}
}

If current > worst {worst < current}
}
0 « worst
Return o

Procedure: ObjectiveInterfaceNodesInOrderB .(G,o,v[],p,i)

Moves node i to proposed segment p and computes the
Problem 2 objective as in ObjectivelnterfaceNodesInOrderA.
If the objective value for the proposed change is an
improvement, the move is made permanent and the solution
and its objective value are updated; otherwise the original
partition ‘and its objective value are returned.

Input: G=(N,2a), an undirected network in
adjacency-1list form
v[], current solution

o, current solution value which is the
number of interface nodes in the
partition defined by vI[]

i, a node proposed to be moved to N,

p, proposed partition segment for i

Output: v[], the input solution if the proposed
move does not improve the
objective value, the input
solution with node k moved if the
move does improve the solution

o, objective value of returned solution

39

c « vii]
v[i] «< p
current « 0
worst « O
K ¢ maxi-i,. , |n] VI[i]
For kK = 1 to K-1 {
current « 0
For i' = 1 to |N|
If v[i'] £ k {
found « false
For each node j adjacent to i' {
If v[j] > k {
found « true

}

If found {current++}
}

}

If current > worst {worst <« current}

}

If worst < o {0 <« worst}
else {v[i] <« c}

Return {o, vI[]}

Procedure: ObjectiveInterfaceNodesInOrderC
(G,o0,v[],set S,mapping p)
Moves each node i € S from its current partition
'segment to a new partition segment Ny(i;. Then computes the

Problem 2 objectlve value as in
ObjectiveInterfaceNodesInOrderA. If the objective value
for the proposed change is an improvement, the move is made
permanent and the solution and its objective value are
updated; otherwise, the original partition and its
objective value are returned.

Input: G=(N,34), an undirected network in
adjacency-list form
v[], current solution

o, current solution value which is the
number of interface nodes in the
partition defined by V[l]

S, a set of nodes

40

p. a mapping of nodes to partition
segments pl[il]

Output: v[], the input solution if the proposed

}

move does not improve the
objective value; otherwise, the
input solution with nodes in S
moved

o, objective value of returned solution

‘for each s in S {c[s] « vI[s]; v[s] « pls]}

current <« O
worst « O
K <« maxj-1,., |y VI[i]
For k = 1 to K-1 {
current <« 0
For i = 1 to |N| {
If v[i] £ k {
found « false
For each node j adjacent to i {
If v[j] > k {
found <« true
}

If found {current++}

}

}

If current > worst {worst ¢« current}
}
If worst < o {o « worst}
else {for each s in S; vis] « c[s]}
Return {o, v[l}

C. MARELEGAL
Any algorithm that has a possibility of violating the
cardinality constraints m £ |Nx| £ M for k = 1,.., K calls

MakeLegal. If |Nx| < m for any segment k, nodes are

repeatedly moved from the largest segment to k. If |N¢| > M

41

for any segment k, nodes are repeatedly moved to the
smallest segment from k. For this thesis two algorithms
call MakeLegal, namely GetInitialSolution and

RandomizeXNodes. The pseudo-code for Makelegal is:

Procedure: MakeLegal (G,m,M,K,vI[])

Verifies that cardinality constraints are met. But,
if |Nx| < m for any k, a node is moved from the largest
segment to that segment. 2And, if |Ny| > M for any k, a node
is moved to the smallest segment from k.

Input: G=(N,A), an undirected network in
adjacency-list form ‘
m, minimum partition segment size
) M, maximum partition segment size
. K, number of partition segments
: v[], current solution possibly infeasible

Output: v[], feasible solution
{
clk] « 0 for k = 1,..,K ! c[k] will be |N|
For i = 1 to |N]| ¢
k <« vI[i]
clk]l++
}

Z <« argmaxg-1,.,x ClLk] ! N, is the largest
: ! partition segment

For k = 1 to K {
While cfk] < m {
j « random node with v[j] = z
vij] « k
clkl++
clz]--
Z < argmaxg-i,.,x C[K]
}
}
y « argming.;, x clk] ! Ny is the smallest
I partition segment
For k = 1 to K {

42

While c[k] > M {

j « random node with v[j]

vijl] « vy
clyl++
clk]--
Yy € argming.i,.x c[kl]
}
}

Return vI[]

43

=k

44

IV. A DEMONSTRATION OF DORS

This chapter demonstrates the operation of DORS. The
purpose is to illustrate the versatility of DORS through
the use of the library of algorithms and objective-function
evaluators introduced in Chapter III. This library will be
applied to the DIFIP and provide solutions using a 266 MHz
Pentium II PC operating under Windows NT 4.0.

To avoid confusion, the British standard of placing
punctuation outside of quotes is adopted in this chapter.
The items inside of quotes represent the exact form of a
word, phrase, or file name used with DORS.

A. GRAPHICAL USER INTERFACE

When DORS is started, a Graphical User Interface (GUI)
is initiated to provide all the major functions of DORS
with simplé mouse and keyboard commands. The initial
screen of the GUI is shown in Figure 1 and a brief
déscription of all of the functions of DORS follows here.

1. Graph Control

The graph control section of the startup window
consists of the four buttons in the upper left hand corner
of Figure 1 labeled “Change Arc File”, “Change Node File”,

“Save Arc File”, and “Save Node File”, along with the four

45

lines of text immediately to the right of those four

buttons.

Optimization Method
JMasterNodesOrdered

Figure 1. Initial screen of DORS

The graph control section determines which files will
be used for loading and saving graphs. The files are
space-delimited, a standard form of output that is

recognized by all major spreadsheets and word processors.

This makes data manipulation trivial once the data is in
the proper ﬁormat;.the graphs may be loaded into a
spreadsheetgfor easy sorting and displaying of the results
of DORS.

-DORS can load a graph using either an arc set, a node
set, or both. These files are chosen in the graph control
section. The files must follow a standard format. This
format includes a header line that describes the'elements
contained in the file body followed by the body of the file

1

that may cohtain any number of lines to represent either

the arcs or nodes of the graph.

a. Change Node File Button

When the mouse is clicked over the Change Node
File button a second window is accessed as shown in Figure
2. Thié window allows the user to browse through local
data storage media such as diskeptes, hard drives, or CD-
ROMs to find a file representing a'node set. The user may
also type in the filename and location of a file to access
the data on a local storage device.

The filename of the current file containing the
node set is displayed immediately to the right of the

Change Node File button. If this file name is changed to

“none” or made null by entering nothing, the solver will

not load a node set.

Optimization Method

%

RandomSoluﬁon] MastéfNodesOfdered

MasterNodeObjective %} ObjectiveCountMasterNades % Randomi
Modifualgorithm ;@ ObjectiveMasterNodesIinOrder % Runalgor
Node Save File %9 DbjectiveMinCut 1
E] Objectives . ' ‘
78] OutputGraph -

Figure 2. File browsing window in DORS

The first few lines of the file with the node set
used for DTFIP follow:

name java.lang.String degreesLatitude java.lang.Double degreesLongitude

java.lang.Double

DOOIN184 24.5517 -81.7967
DOOIN137 24.5667 -81.6833
DOOIN175 25.9167 -80.2667
DOOIN110 27.6906 -97.2894

In the example above, the header line wraps over
two lines. The first column contains a property of the
node~called “name” which is a String data type. A String
data type in Java is simply text. The name is used for
unique identification of the node. The second and third
columns céntain properties labeled “degreesLatitude” and
“degreeéLongitude” of data type Double (a floating-point,
double-precision number). These two properties define the
physical location of the node in degrees Nérth Latitude,

and degrees East Longitude.

b. Change Arc File Button

The Change Arc File button works identically to
the Change Node File button. A sample from the first few
lines of a file containing the DTFIP arcs follows:

name java.lang.String name java.lang.String flow java.lang.Integer

DO0INOO1 DOOINO13 1
DOOINOO1 DOOINO28 1

49

DO0OINO0O1 DOOINO037
DO0OINGOO1 DO01NO043
DO0INOO1 DOOINO52
DO0INOO1 DOOIN123
DO0IN0O03 DOOINOO4

e A e e

The first column is a property called “name”
associated with the head node of the arc and the second is
the “name” property for the tail arc. The naming
convention here is critical. The property used to identify
nodes in the node file and both head and tail nodes in the
arc file must be the same. If the properties do not‘have
the same name, DORSVwill think each of these is a separate
node and the graph will not be loaded correctly. In DTFIP
the property name is used to identify the node.

The final column is a property called “flow”,
data type Integer. This number represents the number of

transmission lines in the arc and is not used in the DORS

algorithms.

- Ce Save Node File and Save Arc File

The Save Node File and Save Arc File buttons
allow the user to change the files to which the graph is
saved. Functionally, they work exactly like the Load Node

File and Load Arc File buttons and create files that are

50

very similar. These files hold the graph after it has.been

modified by DORS and properties have been added.

2. Load Graph and Save Graph Buttons

The Load Graph and Save Graph buttons are located
directly below the Graph Control Section of the window
shown in Figure 1. The Load Graph button loads a graph
into the solver as a Konig graph [16] by accessing the
files listed to the right of the Change Node File and
Change Arc File buttons. This action must be taken prior
to running a meta-algorithm. Otherwise, the meta-algorithm
can perform no actions.

The Save Graph button accesses the graph in Konig and
saves an arc set and a node set to the files indicated to
the right of the Arc Save File and Node Save File buttons.
It is designed to save a copy of the graph and a problem
solution after DORS has found a (candidate) solution. It
saves the néme and all properties associated with the graph
and the solution.

3. Algorithm Selector

The Algorithm Selector is located directly under the
Load File button and is accessed by clicking the mouse over

the arrow to the right of the white field. The white field

51

contains the name of the algorithm that is currently
selected. When the user clicks the arrow on the right, a

list is displayed as shown in Figure 3.

RandomizeXNodes

CopyGraphProperties
‘[MakeLegal

Figure 3. Selecting an algorithm in DORS
Algorithms may be added to DORS by placing the

algorithm name and location in the list of algorithms

contained in the file “algorithms.data”.

52

4, Reset Button

The Reset Button is located on the left just
underneath the Add Algorithm button. It simply empties the

meta-algorithm leaving no algorithms to run.
5. Optimization Method Selector

Thé Optimization Method Selector operates in the same
manner as the Algorithm Selector: Click the mouse on the
arrow to the right of the selector and highlighﬁ the name
of the des%red objective-function evaluator with the mouse.
The select%g objective-function evaluator will be used by
the meta-algorithm.

Objective-function evaluators mavbe added by placing
the name and location of the evaluator in the file
objectives.data.

6. Add Algorithm Button

The Add Algorithm button is to the right and slightly
above the Optimization Method Seleétor. It queries the
algorithm selected in the Algorithm Selector to find out
what inputs the algorithm needs. DORS then opens a query
window and asks the user to identify the inputs to the
algorithm. The window contains default values that the

user can change (see figure 4).

53

After the Save button is pressed at the bottom of the
query window, the window is closed and the algorithm is

added tb the meta-algorithm.

lgorithm added

“Change

ation Mefhod
-AMasterNodesOrdered

Figure 4. Adding an algorithm to the meta-algorithm
Each time the Add Algorithm button is used, a new query

window appears and the meta-algorithm has the algorithm

displayed in the Algorithm Selector added to it. The meta-

54

algorithm will step through each algorithm in the order
added until each algorithm has been run. The solver will
not loop through algorithms; a loop is simulated by
repeatedly listing the algorithms from within the desired
loop.

7. Run Button

Placing the cursor over the Run button and clicking
the mouse button causes DORS to run the current meta-
algorithm. The objective-function evaluator displayed in
the Optimization Method seleétbr is used for all the
algorithms in the meta-algorithm. The same meta-algorithm
maf be run more than once by waiting until it is done and-
then clicking again. The analyst can dynamically change
the meta—algorithm through the use of the Run Algorithm
button. The objective function may be changed by selecting
a new objective-function evaluator in the Optimization

‘Selector and clicking the Run button again.

8. Status Box

The Status Box is the smaller white field in the upper
right of the window; the word “STATUS” is displayed when
the program is started. This area informs the user when

key DORS functions are completed so that other functions

55

may be used. The information this area gives the user is:
When graphs are loaded or saved, when algorithms are added,
and when each step of the meta-algorithm is complete.
Without this box, it would be difficult for the user to

tell when long-running functions are completed.
9. Meta-Algorithm Box

The Meta-Algorithm Box is the white field in the
bottom of the window. It contains key data about each of
the algorithms in the current meta-algorithm. These five
key fields give the name of the algorithm, the name
assigned to best solﬁtion, the name of the solution being
manipulated by the algorithm, the name assigned to the
value of the best solution, and the name assigned to the
solution being manipulated by the current algorithm. These
five pieces of data allow the user to quickly ascertain how
solutions will be construpted as the meta-algorithm steps
through the list of algorithms. An example of the data

displayed in the Meta-Algorithm box is shown in Figure 5.
10. Graph Panel
When a run of the meta-algorithm is complete, the

Graph Panel is displayed. The graph panel allows the user

to look at the properties of any node, arc, or of the graph

56

itself. The top box of Figure 6 displays the properties
associated with the graph. It contains the various values,
such as the objective value, that are associated with the
graph. The lower boxes contain the properties of the nodes
and arcs of the graph. Any node or arc may be selected in
the same manner that algorithms and objective—function
evaluators are selected in the main window. In this case,
however, the information is displayed in the Box direc£ly
below the selector associated with it. The key information -
contained in these boxes is the current solution. The
segment of any partition may be easily ascertained here.

If the data needs to be looked at more closely and a
laxger quantity of data needs to be displayed at the same
time, the same information can be obtained in a compact
form by clicking the Save Graph button and then viewing the
file with a text editor or spreadsheet.

The Gréph Panel provides a means to check key values
of the solutions after a meta-algorithm run is complete.
Graph Panel is constructed by Konig and is completely

external to DORS.

57

EgaDynamuc Operations Research Solver

lalgorithm

SOLUTION LOCALSOLUTION

Objective LocalObjective BestPartition CurrentPartiti

Objective LocalObjective BestPartition CurrentPartiti
Objective 2Local BestPartition 2Current
: Objective 2Local BestPartition 2Current
“GetInitialSolut Objective 3Local BestPartition 3Current
ChangelNode Objectiwve 3Local BestPartition 3Current
GetInitialSolut Objective 4Local BestPartition d4Current
ChangelNode Objective 4Local BestPartition 4Current
.;‘CopyGraphProper Objective SLocal BestPartition 5Current
& ‘Syap2Nodes Objective SLocal BestPartition 5Current

Figure 5. Sample Meta-Algorithm Box output for DORS

58

WMNJCLLIVE

12Local

method

execute

{order

207

5LocalObjective

144.0

hame

graph(2031462)

| LocalObjective

144.0

44l ocal

147.0

{001,013)

HEY

AR~ TR 18 ps

184

degreesLong...

-81.7967 -

{degreesLatitu...

24.5517

4

{4Current

al

(001013)

1

Figure 6. Graph Panel display provided by Konig

59

B. EXAMPLE OF A META-ALGORITHM RUN WITH DORS

This is a simple walk through of a DORS meta-algorithm
run, from start to finish. First, start DORS by running
the program file “DynamicSolver.class”. This may be done
through the normal method of launching a Java application.
In Windows 95,98, or NT the application is launched by
typing “java Thesis.DynamicSolver” from the DOS prompt.
This will load DORS and the window in Figure 1 will be
displayed.

Now that DORS is running, load a graph. We will load
the graph used in the DTFIP. Use the mouse to place the
cursor over the button labeled “Change Arc File” and click
the left mouse button. A window labeled “Open” appears on
the monitor, as in Figure 2. This window provides two
methods for selecting the file that contains the list of
arcs. You may select a file by placing the cursor over the
' file name and clicking the left mouse buﬁton twice or you
may type the file name in the box labeled “File name”
followed by placing the cursor over the button labeled
“Open” and clicking the left mouse button. Use the second

method and type “arcs.data” in the box labeled “File name”.

60

Then place the cursor over the Open button and click the
left mouse. Now the file is selected.

Load theAselected file as a graph by placing the
cursor over the Load Graph button and clicking the left
mouse button. When the graph is loaded, the words “graph
loaded” appear in the Statﬁs Box.

Now we will create a meta-algorithm. The first
aléorithm is GetInitialSolution. Since the Algorithm
Selector already has this showing, place the cursor over
the Add Algorithm button and click the left mouse button.
A window similar to the one in Figure 4 appears. The
parameters of the algorithm being added may be changed by .
clicking on the field that you wish to change and typing
the desired data. For this demonstration do not change
this data. Now accept the data in the window; place the
cursor over the button labeled “Save” and click the left
‘mouse button. The first algorithm is now loaded and
appears in the Meta-Algorithm box.

For adding more algorithms, we follow the same
procedure. Now we will add ChangelNode. Since the
Algorithm Selector has GetInitialSolution showing we need
to change it. Place the cursor over the arrow just to the

left of the word GetInitialSolution in the Algorithm

61

Selector. The Algorithm Selector will display the
algorithms available as in Figure 3. Place the cursor over
ChangelNode and click the left mouse button. The list
disappears and ChangelNode is displayed in the Algorithm
Selector. Now place the cursor over the Add Algorithm
button and click the left mouse button to bring up the
Algorithm Properties window. Once again the properties are
correct, so click on the Save button to add the second
algorithm to the meta-algorithm. ChangelNode now appears
in the Meta-Algorithm box.

Look at the Meta-Algorithm box closely now. Notice
that the four columns labeled “OBJECTIVE”, “LOCALOBJ”,
“SOLUTION”, and “LOCALSOLUTION” each have identical entries
in them. These are the values entered in the Algorithm
Propertiés window and correspond to the names of the best
objective value, the local objective value, the best
solution, and the local golution. We will use this
information in the next algorithm.

Now we want to add RandomizeXNodes to shock the
solution. Use the Algorithm Selector to chose
RandomizeXNodes and click the Add Algorithm button to
display the Algorithm Properties window. This time we wish

to change the properties so the algorithm operates on the

62

best solution and objective value. Click on the box
labeled “String(MetaAlgorithm)” and change the text to
“Objective2”. Pay attention to the case because Java is
case sensitive. Change the text in the next box labeled
“String(LocalObjective)” to “Objective”. Change the text
in the third box labeled ﬁString(MetaSolution)” to “Best2”.
Change the text in the fourth box labeled
“String(LocalSolution)” to “BestPartition”.

These changes select the best solution and objective
value to be used by RandomizeXNodes. This change in the
Algorithm Properties window made the best solution and'best.
objective value into the local solution and local objective
valug. Copies of the best solution and best oﬁjective
values were made under the property names just assigned.
Now click on the save button and note that the third
algorithm displayed in the Meta-Algorithm box has the
property names we juét assigned listed'next to
RandomizeXNodes in the third row of data.

We now run the meta-algorithm. Place the cursor over
the Run button and click the left mouse button. The meta-
algorithm is now running. When the meta-algorithm is

complete, a window with the Graph Panel is displayed.

63

The top section labeled “Graph” now has the graph-
properties displayed. These include the name of the graph
assigned by DORS, the order of the graph(number of nodes),
the size of the graph (number of arcs), and the properties
we have assigned in DORS. These properties are
“LocalObjective”, “Objective”, and'“Objective2”, each of
which has the objective value associated with the solutions
displayed in the node section of the Graph Panel.

The bottom left of the Graph Panel displays the
properties associated with each node. A node may be
selected by placing the cursor over the box next to the
word “Node5 and clicking the left mouse button to bring up
the lisﬁ of nodes. A node is selected b? a second click of
the left mouse button on the node name. The list of
properties for the node selected is displa?ed. The
properties for each nqde are “name” and the properties we
‘assigned during the meta—algorifhm creation:
“CurrentPartition”, “BestPartition”, and “Best2”.

The last section of the Graph Panel displays the
properties associated with -the arcs. The display is
similar to the node section.

Now we save the solutions to files. Select the name

of the file to save the list of arcs and the associated

64

properties by placing the mouse over the Arc Save File and
clicking the left mouse button. A window appears as in
Figure 2. Type “arc2.data” in the box labeled “File name”
and click on the Open button. vYarc2.data” now appears to
the right of the Arc Save File button. Follow the same
procedure for selecting the file to save the nodes and the
associated properties in the same manner with the Node Save
File button. This time use the file name “nodes2.data”.
Now that the file names have been selected, place the
cursor oveéythe Save Graph button and click the left mouse

button. The data has been saved to the files and you have

successfully completed a session with DORS.

65

66

V. ANALYSIS OF RESULTS

DORS is used here to solve, heuristically, both
formulations of DTFIP presented in Chapter III. DISA would
like the number of partition segments K to be four or five
and they would like 8 ~ 10. An alternative & of fifteen is
considered to determine how relaxation of the partition
size constraints affects solutions.

The same meta-algorithm is used for multiple runs
using both objective functions described in Chapter II, and
variations of K and 6. The meta-algorithm starts with five
random solutions provided by GetInitialSolution, each
followed by ChangelNode for refinement. This provides five
separate solutions: The best solution is kept and the bther
four are discarded by the meta-algorithm. Next, Swap2Nodes
is used on the best solution found so far. After
Swap2Nodes, 51 repetitions of RandomizeXNodes, eaéh
followed by ChangelNode, are run. This is done to shock the
system as in Chapter III. The first shock changes 100
nodes randomly and each subsequent shock reduces the number
by one until the last shock changes only 50 nodes. Aftef

the final shock is complete and ChangelNode has found a

67

local optimum, the best solution found to this point is
sent to Swap2nodes and the meta-algorithm concludes.

The re;sults are presented in the format shown in Table
1. The complete meta-algorithm contains 114 invocations of
the four algorithms. Because of the number of invocations

in the meta-algorithm, only selected steps are shown.

Algorithm Selected step in algorithm Adjusted Objective

Number Cumulative | Value
Seconds

1 GetlnitialSolution (1)

2 ' | ChangelNode (1)

3 .| GetInitialSolution (2)

5 .| ChangelNode (2)

7 Change1Node (3)

9 ChangelNode (4)

11 Change1Node (5)

12 Swap2Nodes (1)

13 RandomizeXNodes (First Instance)

33 RandomizeXNodes (Eleventh Instance)

53 RandomizeXNodes (Twenty-first Instance)

73 RandomizeXNodes (Thirty-first Instance)

93 RandomizeXNodes (Forty-first Instance)

114 Swap2Nodes (2)

Table 1. Example of objective function values and adjusted cumulative time for
selected steps of the meta-algorithm.

The times recorded in the tables are “adjusted.”
Because DORS was built using JBuilder® [19] and is not yet

100 percent platform-independent. It must be run with the
JBuilder run-time system which is very slow. When the GUI

is removed and a state-of-the-art run-time system is used,

68

the execution time decreases by a factor of about 117.over
JBuilder’s times. To reflect the speed that should be
available when the GUI interface is rebuilt without
JBuilder, the actual execution times are divided by 117.
A. First Formulation

Problem 1 (as well as Problem 2) has four variants. K
is set at both four and five and & is changed from ten to
fifteen by varying m and M. Four solutions are provided to
give DISA multiple options should they decide to implement
one of them. For Problem 1, all four variants provide poor

solutions.

Problem 1 attempts to minimize the number of interface:

nodes. The solution for each variant of the problem has an
objective value of at least 188; this leaves fewer than 20
nodes that are not interface nodes in the solution. The
solutions provided under this objective are not much better
than simply designating every node an interface node.

In addition to being poor, the solutions have little
commonality among them. They appear to be randomly
generated solutions. This seemingly random generation of
solutions combined with the lack of real improvement'in the

-objective value bring into question the validity of the

69

meta-algorithm for this objective function: As designed,
perhaps the meta-algorithm simply cannot find a good
solution, but better solutions do exist.

However, a second explanation for poor solutions may
lie in the structure of the DII. It could be that there
are no good solutions for Problem i, and, in fact, the
solutions provided are close to optimal. This idea is
supported by noting the average degree of the nodes, at
fourteen, is large and by noting that the arcs tend to
connect distant nodes as often as close nodes.

To help decide which explanation is correct, the meta-
algorithm heeds to be tested. For the first test, the
graph iﬁ Figure 7 with 20 nodes and 36 arcs is created.
This graph is small enough that an optimal solution can be
found by hand. .

The problem parameters for the meta-algorithm are
modified to conform to the sizé of the test graph by
setting K = 4, m = 3, M = 8. The meta-algorithm, with
these modified parameters, finds the optimal objective
value of seven in each of ten test runs performed on this
graph. This indicates that the meta-algorithm may be doing

its job. .

70

Figure 7. Test graph with 20 nodes and 36 arcs

But the meta-algorithm needs to be tested on a larger
problem. Four subgraphs with 50 nodes and 350 arcs each‘
‘aré randomly éfeated for this &est. The subgraphs are
formed by making each node in the subgraph the end point of
sevén arcs, and then randomly selecting seven other nodes
in the subgraph for the other end point of each of those
a?cs. The four subgraphs are then connected by four arcs

so that each subgraph is connected to two other subgraphs

71

with a single érc and the resulting graph is connected. . In
this large graph an objective value of seven is reached by
placing each subgraph in a segment. This may not be the
optimal objective value but is highly likely to be because
of the graph's structure. If the meta-algorithm finds an
objective value of seven or lower it has, probably, found
the optimal objective value and has performed
satisfactorily.

To test the largé test graph, the meta-algorithm is
given parameters fypical of the DTFIP, in particular, K‘=
4, m = 40, and M = 60.

The meta-algorithm is much less successful on the
larger graph than on the smaller one. The best objective
value found by the meta-algorithm is 132 which is far from
the upper bound of seven. When looking at the meta-
algorithm’s solution it is noted that the graph is
"segmented inﬁo small groups of nodes. It is not possible
to move one or two nodes from these small groups without
increasing the objective value. The meta-algorithm breaks
these groups through the use of RandomizeXNodes, but the

nodes re-form into new groups that remain unbreakable in

ChangelNode and SwapZ2Nodes.

72

A different algorithm is needed to work with these
node groups. An algorithm that moves large blocks of nodes
together may be the proper tool. (A genetic algorithm might
fit‘this bill. For example, see [18].) It is possible that
such an algorithm would combine the small isolated groups
of nodes being left by the meta-algorithm and provide
improved solutions. Once a few groups are combined, a
loéal search algorithm such as ChangelNode may be effective
again. Since such an algorithm does not currently exist in
DORS, the small groups are not properly dealt with.

The test on the large graph demonstrates that the
meta-algorithm may not be able to find the optimal solution
without using a number of shocks that approaches infinity.

B. SECOND FORMULATION

The meta-algorithm applied to Problem 2 is much more
promising. The objective value and thus the number of
'iﬁterface hardware sets needed varies from 82 to 96. This
halves the number of interface hardware sets regquired over
Problem 1. In addition, the solutions for the four
variants are all similar. The majority of the nodes are in

the same segment throughout the variants.

73

Further evidence of a good solution was found when the
meta-algorithm was tested on the small test graph in Figure
7. It found the optimal objective value of three very
gquickly in all ten test runs.

For Problem 2 with K = 4 the number of interface nodes
required is greatest when the third segment is being
upgraded. To reduce the number of active interface nodes
during this step of the upgrade, nodes are placed in the
first and last segments. These "extreme" partition
segments don't have an arc direétly linking them to the
other extreme partition. This increases the number of
active interface nodes in the first partition segment, but
reduces the peak size of the active sets.

When K = 5, the number of nodes in the first segment
is smallér. The peak number of active interface nodes
occurs when the third segment is upgraded so the algorithm
attempts to relieve this'pressure. The algorithm attempté
to reduce the peak number by placing nodes in the extréme
segments as was done when K = 4. The algorithm tends to
reduce the number of nodes in the first segments that are
directly connected to the segment being upgraded during the

peak. This is more evident when K = 5.

74

Since the solutions found by the meta-algorithm are
very similar and they had random starting positions, it is
likely that the solutions are good. The solutions for

Problem 2 for DTFIP are given in Appendix A.

75

76

VI. CONCLUSION

This thesis has developed DORS, a dynamic platform-
independent solver for graph and network problems of
operations research. DORS éllows dynamic run-time
manipulation of meta-algorithms as demonstrated by the “Add
Algorithm” button and the “Objective Method” selector.

DORS is extensible: Thé algorithms and objective-function
‘evaluators used in DORS are independent of the solver and
may be changed by adding or deleting the name of the
algorithm or objective—function evaluator from a text file.
Since DORS is written in Java, it is potentially platform-
.independent. (DORS' graphical user interface is currently
tied to a vendor-specific software system that must be
replaced in the future.) Since the algorithms are written
"in Java using Konig, they can be passively monitored.
However, this capability is not currently being used in the
sdlvef. |

The use of DORS is demonstrated on a graph-
partitioning problem derived from a network—upgfade project
of the Defense Information Systems Agency (DISA). DISA
iﬁtends to upgrade a data-transmission network by

partitioning the network into four or five approximately

77

equal-sized pieces, and then upgrading the hardware in one
segment of the partition at a time. The network of concern
is a portion of the Defense Information Infrastructure
(DII) containing about 200 nodes and 1400 arcs.

When the hardware at a node i is upgraded and i is
directly connected to another node j that is equipped only
with old hardware, interface hardware (in addition to other
hardware) must be installed at i. A node requiring this
interface hardware is referred to as an “interface node.”
Two different upgrade procedures lead to two different
objective functions and thus two versions of the graph-
partitioning problem for DISA: Problem 1 minimizes the
total number of interface nodes used throughout the upgrade
process; Prob}em 2 minimizes the peak number of interface
nodes across all steps of the upgrade process. Four
variants of each problem are analyzed with DORS: The number
"and size of fhe partition segments are allowed to vary.

A library of four heuristic algorithms for graph
partitioning is constructed for use in DORS. This library
is then used to develop a meta-algorithm for solving the
upgrade models. These algorithms are combined dynamically

in a sequence of algorithms called a “meta-algorithm.”

78

A meta-algorithm consisting of 114 invocations of the
four algorithms is developed and applied to construct
solutions for the DII problem. Four variations of each
problem are analyzed.

Solutions for Problem 1 are of little use. Almost all
of the nodes are interface nodes. The meta-algorithm is
applied to a test graph bf approximately the same size as
DISA’'s network, but with a known optimal solution. The
meta-algorithm cannot find a solution close to optimal
indicating that the meta-algorithm is probably ineffective
with this formulation.

' For Problem 2, we allow the interface hardware of the
interface nodes to be used multiple times. In this
formulation, the partition segments are ordered from 1 to
K, with the segments being upgraded in that order. At the
point at which a node i in segment k is adjacent only to
upgraded nodes, node i’s interface hardware may be removed
and used in a segment k', k'’ > k.

The objective is to minimize the peak number of sets
of interface hardware in use at any one time.

The metaéalgorithm performs much better on this
formulation than it does on the first. The total number of

nodes requiring interface hardware is as low as 105. All

79

variants of this formulation seemed to provide good
solutions. The four solutions are similar and the meta-
algorithm finds an optimal solution for the test problem.
Solutions for this formulation, on DISA's DII problem, are
provided in Appendix A for evaluation by DISA.

Despite the difficulty with Problem 1, it has been
demonstrated that DORS allows for the creation of dynamic
platform-independent meta-algorithms. The concépt of
implementing meta-algorithms to provide useful solutiqns is

1

demonstrated and four possible solutions to one formulation

of DISA’s graph-partitioning problem are provided.

APPENDIX A. SOLUTIONS
The solutions from the application of the meta-
algorithm applied to Problem 2 for DTFIP follow this page.
For each solution, partition segments are listed in the
proposed order of implementation. The final set of nodes
marked “disconnected” have degree zero and may be upgraded

at any time.

81

Results for K = 4, m = 40, M = 60.

The strings "DOOIN###" are node identifiers. The
number following the node identifiers indicates for which
steps the node needs active interface hardware. The number
required for each step, in order, are 56, 85, 87.

82

Segment 1 DO0O01IN198 123 DOOIN169 23
DO0INO08 123 DO01N202 12 DO0OIN176 23
DOOINO09 123 DO01N204 123 DOOIN186 23
DO0IN026 123 DO0IN209 DO01IN187 23
DO0INO027 123 DO0IN214 123 DO001N189 23
DO0INO028 123 DO0IN215 123 DO0IN201 23
DOOINO029 12 DO0IN221 123 DO01N207 23
DO0INO030 12 DOOIN225 123 DOOIN211 23
DO0INO032 123 DO0IN227 123 DOOIN218
DOOINO037 123 DO0IN234 123 DO0IN224 23
DOOINO038 123 DOO0IN237 123 DO0OIN238 23
DOOINO41 1 DO01N241 123 DO0IN245 23
DOOINO43 123 DO0IN246 123
DOOINO045 123 D0O01IN248 123 Segment 3
DO0OINO046 123 ' DO0INO004
DO0OO01INO052 123 Segment 2 DO01N006
DOOINO64 123 DOOINO18 23 DO0INO13 3
DOOINO66 123 - DO0ING19 DOO01INO15
DO01N072 123 DO01INO033 DOOINO017
DOOINO080 123 D00INO050 23 DO01INO21
DOOINOS81 123 DOOINO51 3 DO001NO031
DOOINO082 12 DOO01INO55 23 DO0INO35
DOOINO86 123 DO01INQ056 23 DO001N039
DOOINO88 123 DOOINO61 23 DO0O0INO053 3
DOOINO089 123 DOOINO6S5 23 - DOOINO70 3
DOOINO90 123 DOO0INO71 23 DOO0INO074
DOO0IN102 123 DO0OINO76 3 DOOINO75
DOOIN105 12 DO01INO78 DOOINO77
DOOIN110 1 -DO0INO079 23 DO01NO085

. DO0IN120 123 DO0IN091 23 . DOOINO87
DOOIN121 123 DO01IN094 23 DO0IN093
DOOIN136 123 DOOINO096 23 DO0O01N095
DOOIN137 123 DO01NOQ98 23 DOOIN100
DOOIN148 12 DO01IN099 23 DOOIN101 3
DOOIN160 12 DOOIN111 DO0IN103 3
DOOIN162 123 DO0IN117 23 DO0OO01IN104
DOO1IN163 123 DO001IN124 23 D001N109
DOOIN165 123 DO0IN126 DOOIN112
DOO0IN175 123 DO01N127 23 DOOIN1153
DOOIN181 123 DO0IN142 23 DO01N122
DOOIN182 123 DO0IN145 23 DO0IN125
DOOIN184 123 DOO1IN164 DO0O0IN129
DOOIN188 123 DO01N166 23 DOOIN132
DO0O1IN192 123 DOOIN168 23 DO01N133 3

DO001IN141
DO0IN143
DO0IN149
DO01IN151
DO01IN159
DO01IN172
- DOOIN183
DO01IN185
DO01IN191
DO001IN194
DO0IN200
DO01N206
DO01IN210
DO0O01IN212
DO01N223
DO01N228
DO01IN235
DO001N239
DO001N244
DO0IN250

Segment

D001INOO1
DO0O0INO0O03
DO01N007
DO0INO14
DO0INO16
DO01N020
DO001N023
DO01IN(O24
DO001IN025
DO0IN036

DO001N040
DO0O01N042
DO00IN048
DOOINO057
DOOINO059
DO0IN063
DO01N067
DO01NO069
DO0O0INO084
DO001N097
DO0IN107
DOOIN108
DOOIN113
DO0IN114
DO0OIN116
DO00IN123
DOOIN130
DO0OIN139
DO0IN144
DOOIN146
DO01N147
DOOIN150
DOOIN152
DO0IN153
DO0IN156
DOOIN157
DOO0IN158
DO0IN161
DO0IN167
DOOIN171
DO0OIN174
DO01IN179

DOOIN180
DO01N190
DO01N203
DO0IN208
DO0IN213
DO0IN216
DO0IN217
DOOIN219
DO00IN220
DOOIN222
DOOIN226
DO0IN229
DOO0IN233
DO01N236
DO01N240
DO01N243
DO0IN247
DO01N249

Disconnected
DO0IN002
DO0INO60
DOOIN119
DO0IN134
DOOIN138
DO0IN140
DOO0IN196
DOOIN230
DOOIN231
DOOIN232

Results for K = 4,

Segment 1
DOOINO0OS 123
DO01NOO09 123
DO00INO026 123
DO001N027 123
DO001INO028 123
DO001IN029 12
DO00INO030 12
D00INO032 123
DO0INO037 123
DO00OINO038 123
DO0INO41 1
DO0INO043 123
DO0OINO045 123
DO0O01IN046 123
DO01INO052 123
DO0IN064 123
DO0INO066 123
DO0INO0O72 123
DO01INO080 123
DOOINO81 123
DO0INO82 12
DO0OINO086 123
DOOINO8S 123
DO0INO089 123
DO0INO090 123
DO001IN102 123
DOOIN105 12
DO0OIN110 123
- DOOIN120 123
DO0OIN121 123
DOOIN148 12
DO0IN160 12
DO0IN162 123
DO00IN163 123
DOOIN165 123
DO00IN181 123
DO0O01N182 123
DO00IN188 123
DO00IN192 123
DO0IN198 123
DO01IN202 12
DO0IN204 123
DO0IN209 123
DO0IN214 123

The strings "DOOIN###"
number following the node identifiers indicates for which
steps the node needs active interface hardware. The number
required for each step, in order, are 52, 78, 84.

m = 35,

DOO0IN215 12
DO0IN225 12
DO0IN227 123
DO01N234 123
DO0IN237 123
DO0IN241 123
DO0IN246 12
DO01N248 123

Segment 2
DO001INO18 3
DO01NO19
DO01INO033
DO001NO050 23
DOOINO51 23
DOOINO55 3
DOO01NO056 23
DO01N061 23
DO01NO065 23
D001NO071 23
DO01INO076 23 -
DO01INO078
DO0INO79 3
DO01NO091 23
DO01NQ94 23
DO0O01N096 23
D001N098 23
DO01NQ99 23
DOO01IN111
DOOIN117 3
DO001N124 23
DOO0IN126
DO0O01IN127 23
DO0IN142 3
DO001N145 23
D00IN164
DO01N166 23
DO0IN168 23
DO0IN169 23
DO01IN176 23
DO01IN186 23
DO01N187 23
DO01IN189 23
DO01IN201 3
D001N207 23

84

are node identifiers.

DO0O0IN211 23
DOOIN218

DO001IN224 23
DO0IN238 23
DO0OIN245 23

Segment 3
DO0INO004
DO01N006
DO0INO13 3
DO0INO15
DO0INO17
DO00INO21 3
DO001N031
DO001N035
DO0IN039
DO01INO053 3
DO001NO070 3
DO0IN074
DO01NO075
DO001N077
DO01NO85
DOO1N087
DOOIN093
DO001N095
DO001IN100
DO0IN101 3
DOOIN103 3
DOOIN104
DO01IN109
DO0IN112
DO0OIN1153
DO001N122
DO01IN125
DO01IN129
DO001IN132
DO0IN133 3
DO001N141
DO0O01N143
DO0IN149
DO0IN1513
DO0IN159
DO0IN172
DO0OIN183
DO0IN185 3

The

DO00IN191
DOOIN1%94
D001N200
DO0IN206
DO0IN210
DO0IN212
DO001N223
DO01N228
DO001N235
DO0IN239
DO0IN244
DO001IN250

Segment 4
DO0IN0O1
DO01N003
DO0IN0O7
DO001NO014
DO01NO16
DO01NO20
D001N023
DO01N024
DO0IN025
DO001N036
DO0IN040
DO001N042
DO00IN048
DO01INO057
DO01NO059
DO0IN063
DO01IN067

DO0INO069
DO001N084
DO0OIN097
DO0OIN107
DOOIN108
DO0IN113
DO0IN114
DO01IN116
DO0OIN123
DOOIN130
DO0O0IN136
DO0IN137
DOOIN139
DOOIN144
DO0OIN146
DO01N147
DOOIN150
DOOIN152
DOOIN153
DOOIN156
DOOIN157
DOOIN158
DO01N161
DOOIN167
DO01N171
DO001IN174
DOOIN175
DO0OIN179
DO0OIN180
DO01N184
DO0OIN190

85

DO0IN203
DO0IN208
DO0IN213
DOOIN216
DO0IN217
DO001N219
DO001N220
DO001IN221
DO00IN222
DO001N226
DO001N229
DO001N233
DOO0IN236
DO001N240
DO001N243
DO001N247
DO001N249

Disconnected
DOOINOO6
DOOINO060
DO0O0IN119
DOOIN134
DOOIN138
DO01IN140
DO01IN196
DO0IN230
DO0O01IN231
DO0IN232

Results for K = 5, m = 30, M = 50.

The strings "DOOLIN###" are node identifiers. The
number following the node identifiers indicates for which
steps the node needs active interface hardware. The number
required for each step, in order, are 33, 72, 96, 85.

Segment 1 DOO1NO5S5 234 DOOIN103 3
DO0INQO06 1234 DO001NO059 234 DOOIN109 3
DOOINOO8 1234 DOOINO65 234 DOOIN112 34
DO0INO15 1234 ° DO001IN069 234 DO0O1N113
DO0O01INO021. 1234 DO0INO0O77 234 DO0OIN114
DO0O0INO028 123 DO01NO78 DOOIN127 3
DO0INO46 1234 DO01NO082 234 DO0IN142 34
DO00INO063 1234 DO01NO085 234 DO001IN143
DO0INO74 1234 DO001INO87 23 DOOIN153 34
DOOINO79 1234 DO0OIN090 234 DO0IN171 34
DO0INO81 1234 DO0IN094 23 DOOIN180 34
DOOINOS88 1234 DO0IN096 234 DOOIN186
DO0IN101 1234 DO00IN102 23 DOOIN198 34
DO0IN110 123 DOOIN105 23 DO00IN210 34
DOOIN111 1234~ DOOIN117 23 DOOIN214 34
DOOIN115 p DO0O01IN120 234 DOOIN222 34
DO0IN116 1 : DO0O01IN122 234 DO0O01IN228 34
DO01IN126 1234 DO001N130 23 DO001N234 3
DO0IN141 1234 DO0O0IN132 234 DO0IN235 34
DO0IN146 1234 DO0IN139 DO001N238
DO0IN147 1234 DO0IN148 234 DO001N243 34
DO0IN149 1234 DO0O01IN152 234 DO0O0IN248 34
DOOIN150 1234 DO0O01IN166 234
DO0IN151 1234 DO0IN189 234 _ Segment 4
DO0IN156 1234 DO0O0IN201 234 DO001NO003
DOOIN161 1234 DO0O01N208 234 DO001NO007
DO0OIN162 1234 DO01IN215 23 DOOINO13
DO0IN164 1234 DO01N217 234 DO001NO14
DOOIN179 1234 DO0IN224 234 DOOINO18 4
DO0IN182 123 DO0O01N227 23 DO001IN020
DOOIN187 1234 DO0IN229 234 . . : DO0INO026
DOOIN188 1234 DO0O01N233 234 ’ DOO1INO027
DO0OIN190 1234 DO01IN236 23 DO0O1INO030
DO0IN211 12 DO0IN239 234 DO00OINO033 4
DO01N245 1234 DO0IN246 234 DO01NO035
DO001N250 DO01INO036
Segment 3 DOOINO041
Segment 2 DO0INO16 34 DO0O01N048
DO01INO001 234 DOOINO17 34 DO0O01NO050
DO01INO031 234 DO0OINO39 3 DO001INO057 4
DO001INO032 234 DO0INO64 34 DO01INO61
DO01INO038 234 DO0INO66 34 DOOINO75
DO0IN042 234 DO0INO089 34 DO001N097
DO0O0INO052 234 DO0INQ93 3 DOOIN100
DO001INO053 234 DOOINQO95 3 DOO1IN107

86

DO0OIN125
DOOIN129
DO0IN137
DO00IN144
DOO01IN145 4
DOOIN157
DO01N160
DO01IN165
DO001IN167
DO01IN169
DO0OIN172
DOOIN174 4
DOOIN175 4
DO0O01N184
DOO1N185
DO001IN192
DO0IN204
DO001IN206
DO0OIN212
DO0IN216
DO01IN218 4
DOOIN219 4
DO0IN221
DO0IN225
DO001N226
DO01IN241
DO001N244
DO0IN247 .
DO0IN249

Segment 5
DO0O0IN004

DO01N009
DOOINO19
DOOINO023
DO0IN024
DO0OINO025
DO01INO029
DO0OINO037
DO00IN040
DO0IN043
DO0OINO045
DO0OINO51
DO001NO056
DOOINO067
DOOINO70
DO0O01IN071
DOO0IN072
DO01NO076
DO01N080
DOOINO084
DO0IN086
DO0O01N091
DOOIN098
DOOIN099
DO01IN104
DOOIN108
DOOIN121
DO0O0IN123
DO01IN124
DO0IN133
DO0IN136
DOOIN158

87

DO0IN159
DO0IN163
DOOIN168
DO0IN176
DOOIN181
DO0IN183
DO0IN191
DO0IN194
DO01N200
DO0IN202
D001N203
DO01N207
D001N209
DO0IN213
D001N220
DO01N223
DO01N237
DO01N240

Disconnected
D00IN002
DO001NO60
DOOIN119
DO0IN134
DOOIN138
DO0OIN140
DO0IN196
DO00IN230
DO001IN231
D001IN232

Results for K = 5, m = 25, M = 55.

The strings "DOO1IN###" are node identifiers. The
number following the node identifiers indicates for which
steps the node needs active interface hardware. The number
required for each step, in order, are 31, 65, 82, 78.

Segment 1 DOOINO65 234 DO0OIN171 34
DO0INO006 1234 DO01N069 234 DO0IN180 34
DOOINQO8 1234 DO01NO77 234 ‘ DOOIN198 34
DO0INO21 1234 DO01NO78 DO0IN210 34
DO0O01INO028 123 DOOINO82 234 DO0IN214 34
DO0INO46 1234 DO01INO85 234 DO001N222 34
DO0O0INO063 1234 DOOINO87 234 DO01N228 34
DOOINO74 1234 DO001N090 234 DO001N234 34
DOCINO079 1234 DO0OINQ%4 2 DO001IN235 34
DOOINO81 1234 DO0IN096 234 DO01IN238
DO0OINO88 1234 DO00IN102 23 DO001N243 34
DOOIN101 1234 DOOIN117 234 DO001N248 34
DOOIN110 12 DO00IN120 234
DOOIN111 1234 D001N122 234 Segment 4
DO0O1IN115 DO001N132 234 DO0O01INO003
DO0IN116 1 - DOO0OIN139 DO01INOO7
DO001IN126 1234 DO01IN148 234 DO01INO13
D00IN141 1234 DOOIN189 234 - DO001NO14
D0O01IN146 1234 DO00IN201 234 DO001NO015
DO001IN147 1234 DO001N208 234 DOOINO18
DO0IN149 1234 DO001N217 234 D001N020
DO0IN150 1234 DO0IN224 234 DO001N026
DOOIN151 1234 DO01N227 234 DO001INO027
DOO0IN156 1234 DO01N229 234 DO0O0INO030
DOOIN161 1234 ' DO01N233 234 DO01NO033
DO0IN162 1234 ' DO0O0IN236 2 DO001INO035
DO01IN179 1234) DO001N239 234 DO0O01INO036
DOOIN182 123 DO001N246 234 DO01N041
DOOIN187 1234 DO0O0INO048
DO0OIN188 1234 Segment 3 DO0O01INO050
DOOIN190 1234 , DO001INO16 34 DO01INO057
DO01IN211 123 DO001NO17 34 DO00INO61
DO001N245 1234 DO001N039 34 -DO001INO75
DOOIN250 D001N064 34 DO0INO89 4
DO001N066 34 DO001N0Q97
Segment 2 DO0O0IN093 34 DO00IN100
DO01INO0O1 234 DO0OINO095 34 DO0OIN105
DO0O1INO31 234 D00IN103 DOOIN107
DO0O0IN032 234 D001IN109 » DO0OIN112 4
DO001INO038 234 DO0IN113 DO0O0IN125
DO0IN042 234 DO001IN114 DO0O0IN129
DO01INO052 234 DO001N127 DO0IN137
DO0OINO053 234 DO0IN142 34 D001N144
DO0OINO55 234 DO0O0IN143 DO001IN145
DOOINO059 234 DO0IN153 34 DO0IN152 4

88

DOOIN157 . DOOINO19 DO0IN159

DO0OIN160 D001N023 DO0IN163
DOOIN164 4 DO0IN024 DO0IN168
DO0IN165 DO001NO025 DO0IN176
DO01IN166 4 DO0INO29 DOO0IN181
DO0IN167 ' DO0INO037 DO0OIN183
DO0IN169 DO0INO040 DO001IN186
DO0IN172 DO001N043 DO0O0IN191
DO0IN174 DO0INO045 DO001N194
DO0iIN175 DO0OINO51 DO01N200
DO0IN184 DO001INO56 DO0IN202
DO0OIN185 DO01INO067 DO001IN203
D00IN192 DO0INO070 DO001N207
DO001N204 ‘DO01INO071 DO0O0IN209
DO01IN206 DO0INO072 DO0O0IN213
DO0IN212 DO0OINO76 DO0O0IN220
DO0IN215 4 DO00INO08O0 DO0IN223
- DOOIN216 DO0INO84 DO001N237
DO01IN218 DO001INO086 DO001N240
DO01IN219 DO001N091
DO01IN221 DO001N098 Disconnected
DO001N225 DO0IN099 DO001NO002
D001N226 DO0IN104 DO001NO060
D001N241 DO0IN108 DOOIN119
D001N244 ~ DO00IN121 DO0O0IN134
D001N247 DO00IN123 DO0O01N138
D001N249 DO0OIN124 DO001N140
‘ DO0IN130 DO01IN196
Segment 5 DO0O0iIN133 DO01N230
DO001N004 DO00IN136 DO001N231
DO001INO009 . DOOIN158 DOOIN232

89

90

APPENDIX B. META-ALGORITHM RUNS

DORS is executed on a 266 MHz Pentium II processor
under Windoﬂs NT 4.0. The same sequence of 114 invocations
of the four algorithms presented in this thesis is used in
the formation of the meta-algorithm used to solve the
problemé defined in Chapter III. However, the number of
partitions, minimum partition size, maximum partition size,
and the objective function are varied with each‘run of the
meta-algorithm.

)

The mé}a-algorithm starts with five random solutions
provided bi‘GetInitiaISolution, each followed by
ChangelNode for refinement. This provides five separate
solutions: The best solution is kept and the other four are
discarded by the meta-algorithm. Next, Swap2Nodes is used
on the best solution found so far. After Swap2Nodes, 51
repetitions of RandomizeXNodes, each followed by
ChangelNode, are run. This is doﬁé toishock the system as
was described in Chapter III. The first shock changes 100
nodes randomly and each subsequent shock reduces that

number by one until the last shock changes only 50 nodes.

After the final shock is complete and ChangelNode has found

91

a local optimum, the best solution found to this point is
sent to Swap2nodes and the meta-algorithm concludes.

DORS is designed using Borland’s JBuilder®, which has
a very slow Java virtual machine. This causes the meta-
algorithm to run extremely sluggishly, making execution
times far too long. To reduce this time, the solver needs
to be executed separatély from JBuilder with a state-of-
the-art, just-in-time Java virtual machine. Symantec’s®
Java system was acquired through the Internet and used for
this purpose.

Unfortunately DORS uses JBuilder’s interface builder
to place objects in the GUI, and this makes the DORS design
fall short of 100 percent Java compatibility. Thus, it is
not possible to execute DORS with Symantec’s Java virtual

machine.

To calculate the approximate time the solver would
'take with a sfate—of—the—ért Jéva virtual machine; the
execution time for Problem 1 with M= 60, m = 40, and K = 4
is used as a baseline. A revision of DORS with the meta-
algorithm hardwired and with the GUI disabled is executed.
Tﬁe execution time is 55 seconds compared to an execution

time of 6456 seconds with DORS undér JBuilder. Therefore,

92

to reflect the computational times probably achievable-
using a state-of-the-art Java virtual machine, all
execution times recorded by DORS are divided by a factor of
117 =~ 6456/55.

The cumulative execution time and objective value for
several points in the meta-algorithm for all runs of the

meta-algorithm follow.

93

Algorithm Selected step in algorithm Adjusted Objective
number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 206

2 Change1Node (1) <1 201

3 GetlnitialSolution (2) <1 204

5 ChangelNode (2) <1 199

7 Change1Node (3) <1 190

9 ChangelNode (4) <1 196
11 Change1Node (5) <1 198
12 Swap2Nodes (1) 12 190
13 RandomizeXNodes (First Instance) 12 190
33 RandomizeXNodes (Eleventh Instance) 23 190
53 RandomizeXNodes (Twenty-first Instance) | 30 190
73 RandomizeXNodes (Thirty-first Instance) 37 190
93 RandomizeXNodes (Forty-first Instance) 45 190
114 Swap2Nodes (2) 55 190

Table 2. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 1, m =40, M =60, K =4.

Algorithm Selected step in algorithm Adjusted - Objective
number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 204

2 Change1Node (1) <1 194
3 GetlnitialSolution (2) <1 202

5 ChangelNode (2) <1 200

7 Change1Node (3) <1 194
9 Change1Node (4) <1 194
11 ChangelNode (5) <1 195
12 Swap2Nodes (1) 11 195
13 RandomizeXNodes (First Instance) 11 190
33 RandomizeXNodes (Eleventh Instance) 22 190
53 RandomizeXNodes (Twenty-first Instance) | 28 190
73 . RandomizeXNodes (Thirty-first Instance) 36 190
93 RandomizeXNodes (Forty-first Instance) 43 190
114 Swap2Nodes (2) 53 190

Table 3. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 1, m =35, M =65,K=4.

94

Algorithm | Selected step in algorithm Adjusted Objective
number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 205
2 ChangelNode (1) <1 198
3 GetlnitialSolution (2) <1 205
5 Change1Node (2) <1 199
7 Change1Node (3) <1 201
9 Change1Node (4) <1 197
11 Change1Node (5) <1 199
12 Swap2Nodes (1) 12 199
13 RandomizeXNodes (First Instance) 12 199
33 RandomizeXNodes (Eleventh Instance) 21 196
53 RandomizeXNodes (Twenty-first Instance) | 28 196
73 RandomizeXNodes (Thirty-first Instance) 35 196
93 | RandomizeXNodes (Forty-first Instance) 43 196
114 Swap2Nodes (2) 52 196

Table 4. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 1, m =30, M =50, K =5.

Algorithm | Selected step in algorithm Adjusted Objective
number Cumulative | Value
Seconds

1 GetlInitialSolution (1) <1 204

2 Changel1Node (1) <1 190
3 GetlnitialSolution (2) <1 205

5 ChangelNode (2) <1 192
7 Change1Node (3) <1 196
9 Change1Node (4) <1 200
11 Change1Node (5) <] 193
12 Swap2Nodes (1) 12 190
13 RandomizeXNodes (First Instance) 12 190
33 RandomizeXNodes (Eleventh Instance) 21 190
53 RandomizeXNodes (Twenty-first Instance) | 28 190
73 RandomizeXNodes (Thirty-first Instance) 35 188
93 RandomizeXNodes (Forty-first Instance) 43 188
114 Swap2Nodes (2) 52 188

Table 5. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 1, m =25, M =55,K=3.

95

Algorithm Selected step in algorithm Adjusted Objective

number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 144

2 Change1Node (1) <1 114

3 GetlnitialSolution (2) <1 132

5 Change1Node (2) <1 117

7 Change1Node (3) <1 108

9 Change1Node (4) <1 111

11 ChangelNode (5) <1 103

12 Swap2Nodes (1) 31 95

13 RandomizeXNodes (First Instance) 31 94

33 RandomizeXNodes (Eleventh Instance) 38 91

53 RandomizeXNodes (Twenty-first Instance) | 42 91

73 RandomizeXNodes (Thirty-first Instance) 51 88

93 RandomizeXNodes (Forty-first Instance) 58 87

114 Swap2Nodes (2) 70 87

Table 6. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 2, m =40, M =60, K =4.

Adjusted

Algorithm | Selected step in algorithm Objective

number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 146

2 Change1Node (1) <1 111

3 GetlnitialSolution (2) <1 132

5 Change1Node (2) <1 114

7 Change1Node (3) <1 108

9 Change1Node (4) <1 111

11 Change1Node (5) <1 90

12 Swap2Nodes (1) 27 88

13 RandomizeXNodes (First Instance) 27 85

33 RandomizeXNodes (Eleventh Instance) 34 85

53 RandomizeXNodes (Twenty-first Instance) | 42 84

73 RandomizeXNodes (Thirty-first Instance) 49 84

93 RandomizeXNodes (Forty-first Instance) 56 84

114 Swap2Nodes (2) 71 84

96

Table 7. Objective function values and adjusted cumulative time for selected steps of the
meta-algorithm for Problem 2, m =35, M =65, K=4.

Table 8. Objective function values and adjusted cumulative time for selected steps of the

Algorithm | Selected step in algorithm Adjusted Objective

number Cumulative Value
Seconds

1 GetlnitialSolution (1) <1 123

2 Change1Node (1) <1 114

3 GetlnitialSolution (2) <1 129

5 Change1Node (2) <1 117

7 Change1Node (3) <1 100

9 ChangelNode (4) <1 111

11 ChangelNode (5) <1 105

12 Swap2Nodes (1) 34 97

13 RandomizeXNodes (First Instance) 34 97

33 RandomizeXNodes (Eleventh Instance) 39 97

53 RandomizeXNodes (Twenty-first Instance) | 46 97

73 RandomizeXNodes (Thirty-first Instance) 52 96

93 RandomizeXNodes (Forty-first Instance) 59 96

114 Swap2Nodes (2) 82 96

meta-algorithm for Problem 2, m = 30, M =50, K =35.

Table 9. Objective function values and adjusted cumulative time for selected steps of the

Algorithm | Selected step in algorithm Adjusted Objective

number Cumulative Value
Seconds

1 GetlInitialSolution (1) <1 121

2 ChangelNode (1) <1 90

3 GetlnitialSolution (2) <1 124

5 Change1Node (2) <1 85

7 ChangelNode (3) <1 103

9 Change1Node (4) <1 89

11 Change1Node (5) <1 97

12 Swap2Nodes (1) 41 93

13 RandomizeXNodes (First Instance) 41 91

33 RandomizeXNodes (Eleventh Instance) 47 84

53 RandomizeXNodes (Twenty-first Instance) [53 84

73 RandomizeXNodes (Thirty-first Instance) 59 82

93 RandomizeXNodes (Forty-first Instance) 65 82

114 Swap2Nodes (2) 74 82

meta-algorithm for Problem 2, m =25, M=55,K=35.

97

98

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

LIST OF REFERENCES

Pothen, H. Simon, and K. Liou, “Partitioning Sparse
Matrices with Eigenvectors of Graphs, ” Matrix Analysis
Applications, 11, 1990, pp. 430-452.

B. Mohar, “The Laplacian Spectrum of Graphs,” 6"
International Conference on Theory and Application of
Graphs, John Wiley, New York, 1988, pp. 871-898.

B. Kernighan and S. Lin, “An Efficient Heuristic -
Procedure for Partitioning Graphs,” Bell Systems
Technical Journal, 29, 1970, pp. 291-307.

Defense Information Systems Agency, “Mission and
Mandate, ” http://www.disa.mil/missman.html.

Chairman of the Joint Chiefs of Staff, Joint Vision
2010: America’s Military: Preparing for Tomorrow,
Joint Chiefs of Staff, Washington D.C., 1996.

University of Oklahoma, College of Business
Administration. “ATM: Asynchronous Transmission Mode,”
http://www.busn.ucok.edu/tips/info_hrd/ATM.HTM.

University of Oklahoma, College of Business
Administration. “Statistical Multiplexing, ”

 http://www.busn.ucok.edu/tips/info_hrd/S_MUX.HTM.

H. Simon, “Partitioning of Unstructured Mesh Problems
for Parallel Processing,” Computer Systems
Engineering, 2, 1991, pp. 135-148.

M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear
Programming Theory and Algorithms, 2™ ed., John Wiley
and Sons, Inc., New York, 1993. ‘

G. Fox and W. Furmanski, “Load Balancing Loosely
Synchronous Problems with a Neural Network,”
http://www.npac.syr.edu/.

99

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. Ackley, M. Littman, “A Case for Lamarckian
Evolution,” Proceedings of the Workshop on Artificial
Life, 1992, pp. 3-10.

A. Dekkers and E. Aarts, “Global Optimization and
Simulated Annealing,” Mathematical Programming, 50,
pp. 367-393, 1991.

G. Cornell and C. Hortsmann, Core Java Volume 1.1
Volume I-Fundamentals, Mountain View, CA, Prentice
Hall, 1997.

T. Cormen, C. Leiserson, and R. Rivest, Introduction
to Algorithms, The MIT Press, Cambridge, MA., 1990.

E. Aarts, Simulated Annealing and Boltzmann

Machines, A Stochastic Approach to Combinatorial
Optimization and Neural Networks, John Wiley and Sons
Ltd, New York, 1989.

L. Jackson, “Konig Beta 1.0 User Guide, ”
http://www.trac.nps.navy.mil/jacksonl/konig/.

H. Simon, “The Partitioning Problem, ”
http://www.nas.nasa.gov/Pubs/TechReports/RNRreports/
hsimon/RNR-91-008/Section3_1.html. '

J. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor, MI,
1975.

Borland JBuilder, Version 2.0, inprise Corporation,
1998.

100

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center .2
8725 John J. Kingman Rd., Ste 0944
Ft Belvoir, VA 22060-6218

2. Dudley Knox Library .2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Professor Gordon Bradley, Code OR/BZ : .4
Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor R. K. Wood, Code OR/WA .4
Department of Operations Research -
Naval Postgraduate School
Monterey, CA 93943-5000

5. LT V. S. Schwartz y .2
2503 Broadmoor
Bryan, TX 77802

6. MAJOR Leroy A. Jackson w1
U.S. Army TRADOC Analysis Center
Monterey, CA 93943-5000

101

